
Package: simPop (via r-universe)
September 16, 2024

Type Package

Title Simulation of Complex Synthetic Data Information

Version 2.1.3

Date 2024-01-05

URL https://github.com/statistikat/simPop

Depends R(>= 3.0.0), lattice, vcd

Imports data.table, MASS, Rcpp (>= 0.11.0), RcppArmadillo, e1071,
parallel, nnet, doParallel, foreach, colorspace, VIM, methods,
EnvStats, fitdistrplus, ranger, wrswoR, matrixStats, xgboost,
partykit

Suggests haven, microbenchmark, stringr, tinytest, sampling, covr

LinkingTo Rcpp,RcppArmadillo

Description Tools and methods to simulate populations for surveys
based on auxiliary data. The tools include model-based methods,
calibration and combinatorial optimization algorithms, see
Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v079.i10>)
and Templ (2017) <doi:10.1007/978-3-319-50272-4>. The package
was developed with support of the International Household
Survey Network, DFID Trust Fund TF011722 and funds from the
World bank.

License GPL (>= 2)

LazyLoad yes

ByteCompile TRUE

Collate '0classes.R' 'addKnownMargins.R' 'addWeights.r' 'calibPop.R'
'calibSample.R' 'calibVars.R' 'contingencyWt.R' 'correctHeap.R'
'crossValidation.R' 'fitGPD.R' 'getBreaks.R' 'getCat.R' 'ipu.r'
'meanWt.R' 'printFunctions.R' 'quantileWt.R' 'sampHH.R'
'RcppExports.R' 'silcTools.R' 'silcTools2.R' 'simAnnealingDT.R'
'simCategorical.R' 'simComponents.R' 'simContinuous.R'
'simEUSILC.R' 'simGPD.R' 'simInitSpatial.R' 'simple_dis.R'
'simPop-package.R' 'simRelation.R' 'simStructure.R'
'spBwplot.R' 'spBwplotStats.R' 'spCdf.R' 'spCdfplot.R'

1

https://github.com/statistikat/simPop
https://doi.org/10.18637/jss.v079.i10
https://doi.org/10.1007/978-3-319-50272-4

2 Contents

'spMosaic.R' 'spPredict.R' 'spSample.R' 'spTable.R'
'specifyInput.R' 'sprague.R' 'tableWt.R' 'utility.R' 'utils.R'
'whipple.R' 'dataSets.R' 'zzz.R'

RoxygenNote 7.3.1

Encoding UTF-8

Repository https://statistikat.r-universe.dev

RemoteUrl https://github.com/statistikat/simpop

RemoteRef HEAD

RemoteSha dd31a96730693b9be5cd73574c5802f0aa0a8c67

Contents
simPop-package . 3
addKnownMargins . 5
addWeights<- . 6
calibPop . 7
calibSample . 11
calibVars . 13
contingencyWt . 14
correctHeaps . 15
correctSingleHeap . 17
crossValidation . 18
dataObj-class . 21
eusilc13puf . 21
eusilcP . 24
eusilcS . 26
getBreaks . 27
getCat . 29
get_set-methods . 30
ghanaS . 31
ipu . 32
manageSimPopObj . 34
quantileWt . 35
sampHH . 37
silcTools2 . 38
simCategorical . 40
simComponents . 43
simContinuous . 45
simEUSILC . 50
simInitSpatial . 54
simple_dis . 56
simPopObj-class . 58
simRelation . 59
simStructure . 62
spBwplotStats . 64
spCdf . 65

simPop-package 3

specifyInput . 66
spMosaic . 67
sprague . 69
spTable . 70
tableWt . 71
totalsRG . 72
utility . 73
weighted_estimators . 75
whipple . 77

Index 79

simPop-package Simulation of Synthetic Populations for Survey Data Considering Aux-
iliary Information

Description

The production of synthetic datasets has been proposed as a statistical disclosure control solution
to generate public use files out of protected data, and as a tool to create “augmented datasets” to
serve as input for micro-simulation models. Synthetic data have become an important instrument
for ex-ante assessments of policies’ impact. The performance and acceptability of such a tool relies
heavily on the quality of the synthetic populations, i.e., on the statistical similarity between the
synthetic and the true population of interest.

Details

Multiple approaches and tools have been developed to generate synthetic data. These approaches
can be categorized into three main groups: synthetic reconstruction, combinatorial optimization,
and model-based generation.

The package: simPop is a user-friendly R-package based on a modular object-oriented concept.
It provides a highly optimized S4 class implementation of various methods, including calibration
by iterative proportional fitting and simulated annealing, and modeling or data fusion by logistic
regression.

The following applications further shows the methods and package: We firstly demonstrated the
use of simPop by creating a synthetic population of Austria based on the European Statistics of
Income and Living Conditions (Alfons et al., 2011) including the evaluation of the quality of the
generated population. In this contribution, the mathematical details of functions simStructure,
simCategorical, simContinuous and simComponents are given in detail. The disclosure risk of
this synthetic population has been evaluated in (Templ and Alfons, 2012) using large-scale simula-
tion studies.

Employer-employee data were created in Templ and Filzmoser (2014) whereby the structure of
companies and employees are considered.

Finally, the R package simPop is presented in full detail in Templ et al. (2017). In this paper - the
main reference to this work - all functions and the S4 class structure of the package are described in
detail. For beginners, this paper might be the starting point to learn about the methods and package.

4 simPop-package

Package: simPop
Type: Package
Version: 1.0.0
Date: 20017-08-07
License: GPL (>= 2)

Author(s)

Bernhard Meindl, Matthias Templ, Andreas Alfons, Alexander Kowarik,

Maintainer: Matthias Templ <matthias.templ@gmail.com>

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi:10.18637/jss.v079.i10

A. Alfons, M. Templ (2011) Simulation of close-to-reality population data for household sur-
veys with application to EU-SILC. Statistical Methods & Applications, 20 (3), 383–407. doi:
10.1007/s10260-011-0163-2

M. Templ, P. Filzmoser (2014) Simulation and quality of a synthetic close-to-reality employer-
employee population. Journal of Applied Statistics, 41 (5), 1053–1072. doi:10.1080/02664763.2013.859237

M. Templ, A. Alfons (2012) Disclosure Risk of Synthetic Population Data with Application in the
Case of EU-SILC. In J Domingo-Ferrer, E Magkos (eds.), Privacy in Statistical Databases, 6344
of Lecture Notes in Computer Science, 174–186. Springer Verlag, Heidelberg. doi:10.1007/9783-
642158384_16

Examples

we use synthetic eusilcS survey sample data
included in the package to simulate a population

create the structure
data(eusilcS)

approx. 20 seconds computation time
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
in the following, nr_cpus are selected automatically
simPop <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))
simPop <- simCategorical(simPop, additional=c("pl030", "pb220a"), method="multinom", nr_cpus=1)
simPop
class(simPop)
regModel = ~rb090+hsize+pl030+pb220a

multinomial model with random draws
eusilcM <- simContinuous(simPop, additional="netIncome",

regModel = regModel,
upper=200000, equidist=FALSE, nr_cpus=1)

class(eusilcM)

https://doi.org/10.18637/jss.v079.i10
https://doi.org/10.1080/02664763.2013.859237
https://doi.org/10.1007/978-3-642-15838-4_16
https://doi.org/10.1007/978-3-642-15838-4_16

addKnownMargins 5

this is already a basic synthetic population, but
many other functions in the package might now
be used for fine-tuning, adding further variables,
evaluating the quality, adding finer geographical details,
using different methods, calibrating surveys or populations, etc.
-- see Templ et al. (2017) for more details.

addKnownMargins add known margins/totals

Description

add known margins/totals for a combination of variables for the population to an object of class
simPopObj.

Usage

addKnownMargins(inp, margins)

Arguments

inp a simPopObj containing population and household survey data as well as op-
tionally margins in standardized format.

margins a data.frame containing for a combination of unique variable levels for n-
variables the number of known occurences in the population. The numbers
must be listed in the last column of data.frame ’margins’ while the character-
istics must be listed in the first ’n’ columns.

Details

The function takes a data.frame containing known marginals/totals for a some variables that must
exist in the population (stored in slot ’pop’ of input object ’inp’) and updates slot ’table’ of the input
object. This slot finally contains the known totals.

households are drawn from the data and new ID’s are generated for the new households.

Value

an object of class simPopObj with updated slot ’table’.

Author(s)

Bernhard Meindl

6 addWeights<-

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi:10.18637/jss.v079.i10

Examples

data(eusilcS)
data(eusilcP)
Not run:
approx. 20 seconds computation time
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
inp <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))
inp <- simCategorical(inp, additional=c("pl030", "pb220a"), method="multinom",nr_cpus=1)

margins <- as.data.frame(
xtabs(rep(1, nrow(eusilcP)) ~ eusilcP$region + eusilcP$gender + eusilcP$citizenship))

colnames(margins) <- c("db040", "rb090", "pb220a", "freq")
inp <- addKnownMargins(inp, margins)
str(inp)

End(Not run)

addWeights<- Methods for function addWeights

Description

allows to modify sampling weights of an dataObj or simPopObj-object. As input the output of
calibSample must be used.

Usage

addWeights(object) <- value

S4 replacement method for signature 'dataObj'
addWeights(object) <- value

S4 replacement method for signature 'simPopObj'
addWeights(object) <- value

Arguments

object an object of class dataObj or simPopObj.

value a numeric vector of suitable length

https://doi.org/10.18637/jss.v079.i10

calibPop 7

Examples

data(eusilcS)
data(totalsRG)
Not run:
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
approx. 20 seconds ...
addWeights(inp) <- calibSample(inp, totalsRG)

End(Not run)

calibPop Calibration of 0/1 weights by Simulated Annealing

Description

A Simulated Annealing Algorithm for calibration of synthetic population data available in a simPopObj-
object. The aims is to find, given a population, a combination of different households which opti-
mally satisfy, in the sense of an acceptable error, a given table of specific known marginals. The
known marginals are also already available in slot ’table’ of the input object ’inp’.

Usage

calibPop(
inp,
split = NULL,
splitUpper = NULL,
temp = 1,
epsP.factor = 0.05,
epsH.factor = 0.05,
epsMinN = 0,
maxiter = 200,
temp.cooldown = 0.9,
factor.cooldown = 0.85,
min.temp = 10^-3,
nr_cpus = NULL,
sizefactor = 2,
choose.temp = TRUE,
choose.temp.factor = 0.2,
scale.redraw = 0.5,
observe.times = 50,
observe.break = 0.05,
n.forceCooldown = 100,
verbose = FALSE,
hhTables = NULL,
persTables = NULL,
redist.var = NULL,
redist.var.factor = 1

)

8 calibPop

Arguments

inp an object of class simPopObj with slot ’table’ being non-null! (see addKnownMargins).

split given strata in which the problem will be split. Has to correspond to a column
population data (slot ’pop’ of input argument ’inp’) . For example split =
(c("region"), problem will be split for different regions. Parallel computing
is performed automatically, if possible.

splitUpper optional column in the population for which decides the part of the popula-
tion from which to sample for each entry in split. Has to correspond to
a column population data (slot ’pop’ of input argument ’inp’). For example
split = c("region"), splitUpper = c("Country") all units from the coun-
try are eligable for donor sample when problem is split into regions. Is usefull if
simInitSpatial() was used and the variable to split the problem into results
in very small groups (~couple of hundreds to thousands).

temp starting temperatur for simulated annealing algorithm

epsP.factor a factor (between 0 and 1) specifying the acceptance error for contingency table
on individual level. For example epsP.factor = 0.05 results in an acceptance error
for the objective function of 0.05*sum(People).

epsH.factor a factor (between 0 and 1) specifying the acceptance error for contingency table
on household level. For example epsH.factor = 0.05 results in an acceptance
error for the objective function of 0.05*sum(Households).

epsMinN integer specifying the minimum number of units from which the synthetic popu-
latin can deviate from cells in contingency tables. This overwrites epsP.factor
and epsH.factor. Is especially usefull if cells in hhTables and persTables
are very small, e.g. <10.

maxiter maximum iterations during a temperature step.

temp.cooldown a factor (between 0 and 1) specifying the rate at which temperature will be re-
duced in each step.

factor.cooldown

a factor (between 0 and 1) specifying the rate at which the number of permuta-
tions of housholds, in each iteration, will be reduced in each step.

min.temp minimal temperature at which the algorithm will stop.

nr_cpus if specified, an integer number defining the number of cpus that should be used
for parallel processing.

sizefactor the factor for inflating the population before applying 0/1 weights

choose.temp if TRUE temp will be rescaled according to eps and choose.temp.factor. eps
is defined by the product between epsP.factor and epsP.factor with the sum
over the target population margins supplied by addKnownMargins or hhTables
and persTables.

choose.temp.factor

number between (0,1) for rescaling temp for simulated annealing. temp rede-
fined bymax(temp,eps*choose.temp.factor). Can be usefull if simulated
annealing is split into subgroups with considerably different population sizes.
Only used if choose.temp=TRUE.

calibPop 9

scale.redraw Number between (0,1) scaling the number of households that need to be drawn
and discarded in each iteration step. The number of individuals currently se-
lected through simulated annealing is substracted from the sum over the target
population margins added to inp via addKnownMargins. This difference is di-
vided by the median household size resulting in an estimated number of housh-
olds that the current synthetic population differs from the population margins
(~redraw_gap). The next iteration will then adjust the number of housholds to
be drawn or discarded (redraw) according to max(ceiling(redraw-redraw_gap*scale.redraw),1)
or max(ceiling(redraw+redraw_gap*scale.redraw),1) respectively. This
keeps the number of individuals in the synthetic population relatively stable re-
garding the population margins. Otherwise the synthetic population might be
considerably larger or smaller then the population margins, through selection of
many large or small households.

observe.times Number of times the new value of the objective function is saved. If observe.times=0
values are not saved.

observe.break When objective value has been saved observe.times-times the coefficient of
variation is calculated over saved values; if the coefficient of variation falls be-
low observe.break simmulated annealing terminates. This repeats for each
new set of observe.times new values of the objecive function. Can help save
run time if objective value does not improve much. Disable this termination by
either setting observe.times=0 or observe.break=0.

n.forceCooldown

integer, if the solution does not move for n.forceCooldown iterations then a
cooldown is automatically done.

verbose boolean variable; if TRUE some additional verbose output is provided, however
only if split is NULL. Otherwise the computation is performed in parallel and
no useful output can be provided.

hhTables Information on population margins for households. Can bei either a single
data.table or data.frame or a list with multiple data.tabless or data.frames.
Each table must have one column named Freq and all other columns holding
variable(s) of the synthetic population. Each row in this table corresponds to a
the frequency count a one of the variable combination in that table, see exam-
ples.

persTables Information on population margins for persons. Can bei either a single data.table
or data.frame or a list with multiple data.tabless or data.frames. Each ta-
ble must have one column named Freq and all other columns holding variable(s)
of the synthetic population. Each row in this table corresponds to a the frequency
count a one of the variable combination in that table, see examples.

redist.var single column in the population which can be redistributed in each ‘split‘. Still
experimental!

redist.var.factor

numeric in the interval (0,1]. Used in combinationo with ‘redist.var‘, still exper-
imental!

10 calibPop

Details

Calibrates data using simulated annealing. The algorithm searches for a (near) optimal combina-
tion of different households, by swaping housholds at random in each iteration of each temperature
level. During the algorithm as well as for the output the optimal (or so far best) combination will be
indicated by a logical vector containg only 0s (not inculded) and 1s (included in optimal selection).
The objective function for simulated annealing is defined by the sum of absolute differences be-
tween target marginals and synthetic marginals (=marginals of synthetic dataset). The sum of target
marginals can at most be as large as the sum of target marginals. For every factor-level in “split”,
data must at least contain as many entries of this kind as target marginals.

Possible donors are automatically generated within the procedure.

The number of cpus are selected automatically in the following manner. The number of cpus is equal
the number of strata. However, if the number of cpus is less than the number of strata, the number
of cpus - 1 is used by default. This should be the best strategy, but the user can also overwrite this
decision.

Value

Returns an object of class simPopObj with an updated population listed in slot ’pop’.

Author(s)

Bernhard Meindl, Johannes Gussenbauer and Matthias Templ

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi:10.18637/jss.v079.i10

Examples

data(eusilcS) # load sample data
data(eusilcP) # population data
Not run:
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
simPop <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))
simPop <- simCategorical(simPop, additional=c("pl030", "pb220a"), method="multinom", nr_cpus=1)

add margins
margins <- as.data.frame(

xtabs(rep(1, nrow(eusilcP)) ~ eusilcP$region + eusilcP$gender + eusilcP$citizenship))
colnames(margins) <- c("db040", "rb090", "pb220a", "freq")
simPop <- addKnownMargins(simPop, margins)
simPop_adj2 <- calibPop(simPop, split="db040",

temp=1, epsP.factor=0.1,
epsMinN=10, nr_cpus = 1)

End(Not run)
apply simulated annealing
Not run:

https://doi.org/10.18637/jss.v079.i10

calibSample 11

simPop_adj <- calibPop(simPop, split="db040", temp=1,
epsP.factor=0.1,nr_cpus = 1)

End(Not run)
Not run:
use multiple different margins
person margins
persTables <- as.data.frame(
xtabs(rep(1, nrow(eusilcP)) ~ eusilcP$region + eusilcP$gender + eusilcP$citizenship))
colnames(persTables) <- c("db040", "rb090", "pb220a", "Freq")

household margins
filter_hid <- !duplicated(eusilcP$hid)
eusilcP$hsize4 <- pmin(4,as.numeric(eusilcP$hsize))
hhTables <- as.data.frame(
xtabs(rep(1, sum(filter_hid)) ~ eusilcP[filter_hid,]$region+eusilcP[filter_hid,]$hsize4))

colnames(hhTables) <- c("db040", "hsize4", "Freq")
simPop@pop@data$hsize4 <- pmin(4,as.numeric(simPop@pop@data$hsize))

simPop_adj_2 <- calibPop(simPop, split="db040",
temp=1, epsP.factor=0.1,
epsH.factor = 0.1,
persTables = persTables,
hhTables = hhTables,
nr_cpus = 1)

End(Not run)

calibSample Calibrate sample weights

Description

Calibrate sample weights according to known marginal population totals. Based on initial sample
weights, the so-called g-weights are computed by generalized raking procedures.

Details

The methods return a list containing both the g-weights (slot g_weights) as well as the final weights
(slot final_weights) (initial sampling weights adjusted by the g-weights.

Methods

The function provides methods with the following signatures.

Argument ’inp’ must be an object of class data.frame, dataObj or simPopObj and the totals
must be specified in either objects of class table or data.frame. If argument ’totals’ is a
data.frame it must be provided in a way that in the first columns n-columns the combinations of
variables are listed. In the last column, the frequency counts must be specified. Furthermore,
variable names of all but the last column must be available also from the sample data specified

12 calibSample

in argument ’inp’. If argument ’total’ is a table (e.g. created with function tableWt, it must
be made sure that the dimnames match the variable names (and levels) of the specified input
data set.

Note

list("signature(inp=\"df_or_dataObj_or_simPopObj\", totals=\"dataFrame_or_Table\",...)") This
is a faster implementation of parts of calib from package sampling. Note that the default calibra-
tion method is raking and that the truncated linear method is not yet implemented.

Author(s)

Andreas Alfons and Bernhard Meindl

References

Deville, J.-C. and Saerndal, C.-E. (1992) Calibration estimators in survey sampling. Journal of the
American Statistical Association, 87(418), 376–382. Deville, J.-C., Saerndal, C.-E. and Sautory,
O. (1993) Generalized raking procedures in survey sampling. Journal of the American Statistical
Association, 88(423), 1013–1020.

Examples

data(eusilcS)
eusilcS$agecut <- cut(eusilcS$age, 7)
Not run:
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")

for simplicity, we are using population data directly from the sample, but you get the idea
totals1 <- tableWt(eusilcS[, c("agecut","rb090")], weights=eusilcS$rb050)
totals2 <- tableWt(eusilcS[, c("rb090","agecut")], weights=eusilcS$rb050)
totals3 <- tableWt(eusilcS[, c("rb090","agecut","db040")], weights=eusilcS$rb050)
totals4 <- tableWt(eusilcS[, c("agecut","db040","rb090")], weights=eusilcS$rb050)

weights1 <- calibSample(inp, totals1)
totals1.df <- as.data.frame(totals1)
weights1.df <- calibSample(inp, totals1.df)
identical(weights1, weights1.df)

we can also use a data.frame and an optional weight vector as input
df <- as.data.frame(inp@data)
w <- inp@data[[inp@weight]]
weights1.x <- calibSample(df, totals1.df, w=inp@data[[inp@weight]])
identical(weights1, weights1.x)

weights2 <- calibSample(inp, totals2)
totals2.df <- as.data.frame(totals2)
weights2.df <- calibSample(inp, totals2.df)
identical(weights2, weights2.df)

End(Not run)

calibVars 13

Not run:
approx 10 seconds computation time ...
weights3 <- calibSample(inp, totals3)
totals3.df <- as.data.frame(totals3)
weights3.df <- calibSample(inp, totals3.df)
identical(weights3, weights3.df)

approx 10 seconds computation time ...
weights4 <- calibSample(inp, totals4)
totals4.df <- as.data.frame(totals4)
weights4.df <- calibSample(inp, totals4.df)
identical(weights4, weights4.df)

End(Not run)

calibVars Construct a matrix of binary variables for calibration

Description

Construct a matrix of binary variables for calibration of sample weights according to known marginal
population totals. The following methods are implemented:

• calibVars.default(x)

• calibVars.matrix(x)

• calibVars.matrix(x)

• calibVars.data.frame(x)

Usage

calibVars(x)

Arguments

x a vector that can be interpreted as factor, or a matrix or data.frame consisting
of such variables.

Value

A matrix of binary variables that indicate membership to the corresponding factor levels.

Author(s)

Bernhard Meindl and Andreas Alfons

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi: 10.18637/jss.v079.i10

14 contingencyWt

See Also

calibSample

Examples

data(eusilcS)
default method
Not run:
aux <- calibVars(eusilcS$rb090)
head(aux)
data.frame method
aux <- calibVars(eusilcS[, c("db040", "rb090")])
head(aux)

End(Not run)

contingencyWt Weighted contingency coefficients

Description

Compute (weighted) pairwise contingency coefficients.

Usage

contingencyWt(x, ...)

Arguments

x for the default method, a vector that can be interpreted as factor. For the matrix
and data.frame methods, the columns should be interpretable as factors.

... for the generic function, arguments to be passed down to the methods, otherwise
ignored.

Details

The function tableWt is used for the computation of the corresponding pairwise contingency tables.
The following methods are implemented:

• contingencyWt.default(x, y, weights = NULL, ...)

• contingencyWt.matrix(x, weights = NULL, ...)

• contingencyWt.data.frame(x, weights = NULL, ...)

Additional parameters are:

• y: a vector that can be interpreted as factor (for the default method)

• weights: an optional numeric vector containing sample weights

correctHeaps 15

Value

For the default method, the (weighted) contingency coefficient of x and y.

For the matrix and data.frame method, a matrix of (weighted) pairwise contingency coefficients
for all combinations of columns. Elements below the diagonal are NA.

Author(s)

Andreas Alfons and Stefan Kraft

References

Kendall, M.G. and Stuart, A. (1967) The Advanced Theory of Statistics, Volume 2: Inference and
Relationship. Charles Griffin & Co Ltd, London, 2nd edition.

See Also

tableWt

Examples

data(eusilcS)

default method
contingencyWt(eusilcS$pl030, eusilcS$pb220a, weights = eusilcS$rb050)

data.frame method
basic <- c("age", "rb090", "hsize", "pl030", "pb220a")
contingencyWt(eusilcS[, basic], weights = eusilcS$rb050)

correctHeaps Correct age heaping

Description

Correct for age heaping using truncated (log-)normal distributions

Usage

correctHeaps(x, heaps = "10year", method = "lnorm", start = 0, fixed = NULL)

Arguments

x numeric vector

heaps • 5year: heaps are assumed to be every 5 years (0,5,10,...)
• 10year: heaps are assumed to be every 10 years (0,10,20,...)

method a character specifying the algorithm used to correct the age heaps. Allowed
values are

16 correctHeaps

• lnorm: drawing from a truncated log-normal distribution. The required
parameters are estimated using original input data.

• norm: drawing from a truncated normal distribution. The required parame-
ters are estimated using original input data.

• unif: random sampling from a (truncated) uniform distribution

start a numeric value for the starting of the 5 or 10 year sequences (e.g. 0, 5 or 10)

fixed numeric index vector with observation that should not be changed

Details

Age heaping can cause substantial bias in important measures and thus age heaping should be
corrected.

For method “lnorm”, a truncated log-normal is fit to the whole age distribution. Then for each age
heap (at 0, 5, 10, 15, ...) random numbers of a truncated log-normal (with lower and upper bound) is
drawn in the interval +- 2 around the heap (rounding of degree 2) using the inverse transformation
method. A ratio of randomly chosen observations on an age heap are replaced by these random
draws. For the ratio the age distribution is chosen, whereas on an age heap (e.g. 5) the arithmetic
means of the two neighboring ages are calculated (average counts on age 4 and age 6 for age heap
equals 5, for example). The ratio on, e.g. age equals 5 is then given by the count on age 5 divided
by this mean This is done for any age heap at (0, 5, 10, 15, ...).

Method “norm” replace the draws from truncated log-normals to draws from truncated normals. It
depends on the age distrubution (if right-skewed or not) if method “lnorm” or “norm” should be
used. Many distributions with heaping problems are right-skewed.

Method “unif” draws the mentioned ratio of observations on truncated uniform distributions around
the age heaps.

Repeated calls of this function mimics multiple imputation, i.e. repeating this procedure m times
provides m imputed datasets that properly reflect the uncertainty from imputation.

Value

a numeric vector without age heaps

Author(s)

Matthias Templ, Bernhard Meindl, Alexander Kowarik

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi: 10.18637/jss.v079.i10

Examples

create some artificial data
age <- rlnorm(10000, meanlog=2.466869, sdlog=1.652772)
age <- round(age[age < 93])
barplot(table(age))

correctSingleHeap 17

artificially introduce age heaping and correct it:
heaps every 5 years
year5 <- seq(0, max(age), 5)
age5 <- sample(c(age, age[age %in% year5]))
cc5 <- rep("darkgrey", length(unique(age)))
cc5[year5+1] <- "yellow"
barplot(table(age5), col=cc5)
barplot(table(correctHeaps(age5, heaps="5year", method="lnorm")), col=cc5)

heaps every 10 years
year10 <- seq(0, max(age), 10)
age10 <- sample(c(age, age[age %in% year10]))
cc10 <- rep("darkgrey", length(unique(age)))
cc10[year10+1] <- "yellow"
barplot(table(age10), col=cc10)
barplot(table(correctHeaps(age10, heaps="10year", method="lnorm")), col=cc10)

the first 5 observations should be unchanged
barplot(table(correctHeaps(age10, heaps="10year", method="lnorm", fixed=1:5)), col=cc10)

correctSingleHeap correctSingleHeap

Description

Correct a specific age heap in a vector containing age in years

Usage

correctSingleHeap(
x,
heap,
before = 2,
after = 2,
method = "lnorm",
fixed = NULL

)

Arguments

x numeric vector representing age in years (integers)

heap numeric or integer vector of length 1 specifying the year for which a heap should
be corrected

before numeric or integer vector of length 1 specifying the number of years before the
heap that may be used to correct the heap. This input will be rounded!

18 crossValidation

after numeric or integer vector of length 1 specifying the number of years after the
heap that may be used to correct the heap. This input will be rounded!

• 5year: heaps are assumed to be every 5 years (0,5,10,...)
• 10year: heaps are assumed to be every 10 years (0,10,20,...)

method a character specifying the algorithm used to correct the age heaps. Allowed
values are

• lnorm: drawing from a truncated log-normal distribution. The required
parameters are estimated using original input data.

• norm: drawing from a truncated normal distribution. The required parame-
ters are estimated using original input data.

• unif: random sampling from a (truncated) uniform distribution

fixed numeric index vector with observation that should not be changed

Value

a numeric vector without age heaps

Author(s)

Matthias Templ, Bernhard Meindl, Alexander Kowarik

Examples

create some artificial data
age <- rlnorm(10000, meanlog=2.466869, sdlog=1.652772)
age <- round(age[age < 93])
barplot(table(age))

artificially introduce an age heap for a specific year
and correct it
age23 <- c(age, rep(23, length=sum(age==23)))
cc23 <- rep("darkgrey", length(unique(age)))
cc23[24] <- "yellow"
barplot(table(age23), col=cc23)
barplot(table(correctSingleHeap(age23, heap=23, before=2, after=3, method="lnorm")), col=cc23)
barplot(table(correctSingleHeap(age23, heap=23, before=5, after=5, method="lnorm")), col=cc23)

the first 5 observations should be unchanged
barplot(table(correctSingleHeap(age23, heap=23, before=5, after=5, method="lnorm",

fixed=1:5)), col=cc23)

crossValidation Simulate variables of population data by cross validation

Description

Simulate variables of population data. The household structure of the population data needs to be
simulated beforehand.

crossValidation 19

Usage

crossValidation(
simPopObj,
additionals,
hyper_param_grid,
fold = 3,
method = c("xgboost"),
type = c("categorical"),
by = "strata",
regModel = "available",
nr_cpus = 1,
verbose = FALSE

)

Arguments

simPopObj a simPopObj containing population and household survey data as well as op-
tionally margins in standardized format.

additionals a character vector specifying additional categorical variables available in the
sample object of simPopObj that should be simulated for the population data.

hyper_param_grid

a grid which can contain model specific parameters which will be passed onto
the function call for the respective model.

fold the number of k in k-fold crossvalidation

method a character string specifying the method to be used for simulating the additional
categorical variables. Accepted value at the moment only "xgboost" for using
xgboost (implementation in package xgboost)

type currently only "categorical" is implemented

by defining which variable to use as split up variable of the estimation. Defaults to
the strata variable.

regModel allows to specify the variables or model that is used when simulating addi-
tional categorical variables. The following choices are available if different from
NULL.

• ’basic’only the basic household variables (generated with simStructure)
are used.

• ’available’all available variables (that are common in the sample and the
synthetic population such as previously generated varaibles) excluding id-
variables, strata variables and household sizes are used for the modelling.
This parameter should be used with care because all factors are automati-
cally used as factors internally.

• formula-objectUsers may also specify a specifiy formula (class ’formula’)
that will be used. Checks are performed that all required variables are avail-
able.

If method ’distribution’ is used, it is only possible to specify a vector of length
one containing one of the choices described above. If parameter ’regModel’ is
NULL, only basic household variables are used in any case.

20 crossValidation

nr_cpus if specified, an integer number defining the number of cpus that should be used
for parallel processing.

verbose set to TRUE if additional print output should be shown.

Details

The number of cpus are selected automatically in the following manner. The number of cpus is equal
the number of strata. However, if the number of cpus is less than the number of strata, the number
of cpus - 1 is used by default. This should be the best strategy, but the user can also overwrite this
decision.

Value

An object of class simPopObj containing survey data as well as the simulated population data in-
cluding the categorical variables specified by argument additional.

Note

The basic household structure needs to be simulated beforehand with the function simStructure.

Author(s)

Bernhard Meindl, Andreas Alfons, Stefan Kraft, Alexander Kowarik, Matthias Templ, Siro Fritz-
mann

See Also

simStructure, simRelation, simContinuous, simComponents, simCategorical

Examples

data(eusilcS) # load sample data
Not run:
approx. 20 seconds computation time
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
in the following, nr_cpus are selected automatically
simPop <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))
grid <- expand.grid(nrounds = c(5, 10),

max_depth = 10,
eta = c(0.2, 0.3, 0.5),
eval_metric = "mlogloss",
stringsAsFactors = FALSE)

simPop <- crossValidation(simPop, additionals=c("pl030", "pb220a"),
nr_cpus=1, hyper_param_grid = grid)
simPop

End(Not run)

dataObj-class 21

dataObj-class Class "dataObj"

Description

Objects of this class contain information on a population or survey.

Objects from the Class

Objects can be created by calls of the form new("dataObj", ...) but are usually automatically
created when using simStructure.

Author(s)

Bernhard Meindl and Matthias Templ

See Also

simPopObj

Examples

showClass("dataObj")

show method, generate an object of class dataObj first
data(eusilcS)
inp <- specifyInput(data=eusilcS, hhid="db030", weight="rb050", strata="db040")
shows some basic information:
inp

eusilc13puf Synthetic EU-SILC 2013 survey data

Description

This data set is synthetically generated from real Austrian EU-SILC (European Union Statistics on
Income and Living Conditions) data 2013.

Format

A data frame with 13513 observations on the following 62 variables.

db030 integer; the household ID.

hsize integer; the number of persons in the household.

22 eusilc13puf

db040 factor; the federal state in which the household is located (levels Burgenland, Carinthia,
Lower Austria, Salzburg, Styria, Tyrol, Upper Austria, Vienna and Vorarlberg).

age integer; the person’s age.

rb090 factor; the person’s gender (levels male and female).

pid personal ID

weight sampling weights

pl031 factor; the person’s economic status (levels 1 = working full time, 2 = working part time, 3 =
unemployed, 4 = pupil, student, further training or unpaid work experience or in compulsory
military or community service, 5 = in retirement or early retirement or has given up business,
6 = permanently disabled or/and unfit to work or other inactive person, 7 = fulfilling domestic
tasks and care responsibilities).

pb220a factor; the person’s citizenship (levels AT, EU and Other).

pb190 for details, see Eurostat’s code book

pe040 for details, see Eurostat’s code book

pl111 for details, see Eurostat’s code book

pgrossIncomeCat for details, see Eurostat’s code book

pgrossIncome for details, see Eurostat’s code book

hgrossIncomeCat for details, see Eurostat’s code book

hgrossIncome for details, see Eurostat’s code book

hgrossminusCat for details, see Eurostat’s code book

hgrossminus for details, see Eurostat’s code book

py010g for details, see Eurostat’s code book

py021g for details, see Eurostat’s code book

py050g for details, see Eurostat’s code book

py080g for details, see Eurostat’s code book

py090g for details, see Eurostat’s code book

py100g for details, see Eurostat’s code book

py110g for details, see Eurostat’s code book

py120g for details, see Eurostat’s code book

py130g for details, see Eurostat’s code book

py140g for details, see Eurostat’s code book

hy040g for details, see Eurostat’s code book

hy050g for details, see Eurostat’s code book

hy060g for details, see Eurostat’s code book

hy070g for details, see Eurostat’s code book

hy080g for details, see Eurostat’s code book

hy090g for details, see Eurostat’s code book

hy100g for details, see Eurostat’s code book

eusilc13puf 23

hy110g for details, see Eurostat’s code book

hy120g for details, see Eurostat’s code book

hy130g for details, see Eurostat’s code book

hy140g for details, see Eurostat’s code book

rb250 for details, see Eurostat’s code book

p119000 for details, see Eurostat’s code book

p038003f for details, see Eurostat’s code book

p118000i for details, see Eurostat’s code book

aktivi for details, see Eurostat’s code book

erwintensneu for details, see Eurostat’s code book

rb050 for details, see Eurostat’s code book

pb040 for details, see Eurostat’s code book

hb030 for details, see Eurostat’s code book

px030 for details, see Eurostat’s code book

rx030 for details, see Eurostat’s code book

pb030 for details, see Eurostat’s code book

rb030 for details, see Eurostat’s code book

hx040 for details, see Eurostat’s code book

pb150 for details, see Eurostat’s code book

rx020 for details, see Eurostat’s code book

px020 for details, see Eurostat’s code book

hx050 for details, see Eurostat’s code book

eqInc for details, see Eurostat’s code book

hy010 for details, see Eurostat’s code book

hy020 for details, see Eurostat’s code book

hy022 for details, see Eurostat’s code book

hy023 for details, see Eurostat’s code book

Details

The data set consists of 5977 households and is used as sample data in some of the examples in
package simPop. Note that it is included for illustrative purposes only. The sample weights do not
reflect the true population sizes of Austria and its regions.

62 variables of the original survey are simulated for this example data set. The variable names are
rather cryptic codes, but these are the standardized names used by the statistical agencies. Fur-
thermore, the variables hsize, age and netIncome are not included in the standardized format of
EU-SILC data, but have been derived from other variables for convenience.

Author(s)

Matthias Templ

24 eusilcP

Source

This is a synthetic data set based on Austrian EU-SILC data from 2013. The original sample was
provided by Statistics Austria.

References

Eurostat (2013) Description of target variables: Cross-sectional and longitudinal.

Examples

data(eusilc13puf)
str(eusilc13puf)

eusilcP Synthetic EU-SILC data

Description

This data set is synthetically generated from real Austrian EU-SILC (European Union Statistics on
Income and Living Conditions) data.

Format

A data.frame with 58 654 observations on the following 28 variables:

hid integer; the household ID.

region factor; the federal state in which the household is located (levels Burgenland, Carinthia,
Lower Austria, Salzburg, Styria, Tyrol, Upper Austria, Vienna and Vorarlberg).

hsize integer; the number of persons in the household.

eqsize numeric; the equivalized household size according to the modified OECD scale.

eqIncome numeric; a simplified version of the equivalized household income.

pid integer; the personal ID.

id the household ID combined with the personal ID. The first five digits represent the household
ID, the last two digits the personal ID (both with leading zeros).

age integer; the person’s age.

gender factor; the person’s gender (levels male and female).

ecoStat factor; the person’s economic status (levels 1 = working full time, 2 = working part time, 3
= unemployed, 4 = pupil, student, further training or unpaid work experience or in compulsory
military or community service, 5 = in retirement or early retirement or has given up business,
6 = permanently disabled or/and unfit to work or other inactive person, 7 = fulfilling domestic
tasks and care responsibilities).

citizenship factor; the person’s citizenship (levels AT, EU and Other).

py010n numeric; employee cash or near cash income (net).

py050n numeric; cash benefits or losses from self-employment (net).

eusilcP 25

py090n numeric; unemployment benefits (net).

py100n numeric; old-age benefits (net).

py110n numeric; survivor’s benefits (net).

py120n numeric; sickness benefits (net).

py130n numeric; disability benefits (net).

py140n numeric; education-related allowances (net).

hy040n numeric; income from rental of a property or land (net).

hy050n numeric; family/children related allowances (net).

hy070n numeric; housing allowances (net).

hy080n numeric; regular inter-household cash transfer received (net).

hy090n numeric; interest, dividends, profit from capital investments in unincorporated business
(net).

hy110n numeric; income received by people aged under 16 (net).

hy130n numeric; regular inter-household cash transfer paid (net).

hy145n numeric; repayments/receipts for tax adjustment (net).

main logical; indicates the main income holder (i.e., the person with the highest income) of each
household.

Details

The data set is used as population data in some of the examples in package simFrame. Note that it is
included for illustrative purposes only. It consists of 25 000 households, hence it does not represent
the true population sizes of Austria and its regions.

Only a few of the large number of variables in the original survey are included in this example data
set. Some variable names are different from the standardized names used by the statistical agencies,
as the latter are rather cryptic codes. Furthermore, the variables hsize, eqsize, eqIncome and age
are not included in the standardized format of EU-SILC data, but have been derived from other
variables for convenience. Moreover, some very sparse income components were not included in
the the generation of this synthetic data set. Thus the equivalized household income is computed
from the available income components.

Source

This is a synthetic data set based on Austrian EU-SILC data from 2006. The original sample was
provided by Statistics Austria.

References

Eurostat (2004) Description of target variables: Cross-sectional and longitudinal. EU-SILC 065/04,
Eurostat.

Examples

data(eusilcP)
summary(eusilcP)

26 eusilcS

eusilcS Synthetic EU-SILC survey data

Description

This data set is synthetically generated from real Austrian EU-SILC (European Union Statistics on
Income and Living Conditions) data.

Format

A data frame with 11725 observations on the following 18 variables.

db030 integer; the household ID.

hsize integer; the number of persons in the household.

db040 factor; the federal state in which the household is located (levels Burgenland, Carinthia,
Lower Austria, Salzburg, Styria, Tyrol, Upper Austria, Vienna and Vorarlberg).

age integer; the person’s age.

rb090 factor; the person’s gender (levels male and female).

pl030 factor; the person’s economic status (levels 1 = working full time, 2 = working part time, 3 =
unemployed, 4 = pupil, student, further training or unpaid work experience or in compulsory
military or community service, 5 = in retirement or early retirement or has given up business,
6 = permanently disabled or/and unfit to work or other inactive person, 7 = fulfilling domestic
tasks and care responsibilities).

pb220a factor; the person’s citizenship (levels AT, EU and Other).

netIncome numeric; the personal net income.

py010n numeric; employee cash or near cash income (net).

py050n numeric; cash benefits or losses from self-employment (net).

py090n numeric; unemployment benefits (net).

py100n numeric; old-age benefits (net).

py110n numeric; survivor’s benefits (net).

py120n numeric; sickness benefits (net).

py130n numeric; disability benefits (net).

py140n numeric; education-related allowances (net).

db090 numeric; the household sample weights.

rb050 numeric; the personal sample weights.

getBreaks 27

Details

The data set consists of 4641 households and is used as sample data in some of the examples in
package simPopulation. Note that it is included for illustrative purposes only. The sample weights
do not reflect the true population sizes of Austria and its regions. The resulting population data is
about 100 times smaller than the real population size to save computation time.

Only a few of the large number of variables in the original survey are included in this example data
set. The variable names are rather cryptic codes, but these are the standardized names used by the
statistical agencies. Furthermore, the variables hsize, age and netIncome are not included in the
standardized format of EU-SILC data, but have been derived from other variables for convenience.

Source

This is a synthetic data set based on Austrian EU-SILC data from 2006. The original sample was
provided by Statistics Austria.

References

Eurostat (2004) Description of target variables: Cross-sectional and longitudinal. EU-SILC 065/04,
Eurostat.

Examples

data(eusilcS)
summary(eusilcS)

getBreaks Compute break points for categorizing (semi-)continuous variables

Description

Compute break points for categorizing continuous or semi-continuous variables using (weighted)
quantiles. This is a utility function that is useful for writing custom wrapper functions such as
simEUSILC.

Usage

getBreaks(
x,
weights = NULL,
zeros = TRUE,
lower = NULL,
upper = NULL,
equidist = TRUE,
probs = NULL,
strata = NULL

)

28 getBreaks

Arguments

x a numeric vector to be categorized.

weights an optional numeric vector containing sample weights.

zeros a logical indicating whether x is semi-continuous, i.e., contains a considerable
amount of zeros. See “Details” on how this affects the behavior of the function.

lower, upper optional numeric values specifying lower and upper bounds other than minimum
and maximum of x, respectively.

equidist a logical indicating whether the (positive) break points should be equidistant or
whether there should be refinements in the lower and upper tail (see “Details”).

probs a numeric vector of probabilities with values in [0, 1] giving quantiles to be used
as (positive) break points. If supplied, this is preferred over equidist.

strata an optional vector specifying a strata variable (e.g household ids). if specified,
the mean of x (and also of weights if specified) is computed within each strata
before calculating the breaks.

Details

If equidist is TRUE, the behavior is as follows. If zeros is TRUE as well, the 0%, 10%, . . . , 90%
quantiles of the negative values and the 10%, 20%, . . . , 100% of the positive values are computed.
These quantiles are then used as break points together with 0. If zeros is not TRUE, on the other
hand, the 0%, 10%, . . . , 100% quantiles of all values are used.

If equidist is not TRUE, the behavior is as follows. If zeros is not TRUE, the 1%, 5%, 10%, 20%,
40%, 60%, 80%, 90%, 95% and 99% quantiles of all values are used for the inner part of the data
(instead of the equidistant 10%, . . . , 90% quantiles). If zeros is TRUE, these quantiles are only used
for the positive values while the quantiles of the negative values remain equidistant.

Note that duplicated values among the quantiles are discarded and that the minimum and maximum
are replaced with lower and upper, respectively, if these are specified.

The (weighted) quantiles are computed with the function quantileWt.

Value

A numeric vector of break points.

Author(s)

Andreas Alfons and Bernhard Meindl

See Also

getCat, quantileWt

Examples

data(eusilcS)

semi-continuous variable, positive break points equidistant

getCat 29

getBreaks(eusilcS$netIncome, weights=eusilcS$rb050)

semi-continuous variable, positive break points not equidistant
getBreaks(eusilcS$netIncome, weights=eusilcS$rb050,

equidist = FALSE)

getCat Categorize (semi-)continuous variables

Description

Categorize continuous or semi-continuous variables. This is a utility function that is useful for
writing custom wrapper functions such as simEUSILC.

Usage

getCat(x, breaks, zeros = TRUE, right = FALSE)

Arguments

x a numeric vector to be categorized.

breaks a numeric vector of two or more break points.

zeros a logical indicating whether x is semi-continuous, i.e., contains a considerable
amount of zeros. See “Details” on how this affects the behavior of the function.

right logical; if zeros is not TRUE, this indicates whether the intervals should be
closed on the right (and open on the left) or vice versa.

Details

If zeros is TRUE, 0 is added to the break points and treated as its own factor level. Consequently,
intervals for negative values are left-closed and right-open, whereas intervals for positive values are
left-open and right-closed.

Value

A factor containing the categories.

Author(s)

Andreas Alfons

See Also

getBreaks, cut

30 get_set-methods

Examples

data(eusilcS)

semi-continuous variable
breaks <- getBreaks(eusilcS$netIncome,

weights=eusilcS$rb050, equidist = FALSE)
netIncomeCat <- getCat(eusilcS$netIncome, breaks)
summary(netIncomeCat)

get_set-methods Extract and modify variables from population or sample data stored
in an object of class simPopObj-class.

Description

Using samp samp<- it is possible to extract or rather modify variables of the sample data within
slot data in slot sample of the simPopObj-class-object. Using pop pop<- it is possible to extract
or rather modify variables of the synthetic population within in slot data in slot sample of the
simPopObj-class-object.

Arguments

obj An object of class simPopObj-class

var variable name or index for the variable in slot ’samp’ of object with the slot name
to be accessed. If NULL, the entire dataset (sample or population) is returned.

value Content replacing whatever the variable in slot var in obj currently holds.

Value

Returns an object of class simPopObj-class with the appropriate replacement.

Author(s)

Bernhard Meindl

See Also

simPopObj-class,pop, pop<-, samp<-, manageSimPopObj

Examples

data(eusilcS)

inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040",
weight="db090")
simPopObj <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))

ghanaS 31

get/set variables in sample-object of simPopObj
head(samp(simPopObj, var="age"))
samp(simPopObj, var="newVar") <- 1
head(samp(simPopObj, var="newVar"))
deleting is also possible
samp(simPopObj, var="newvar") <- NULL
head(samp(simPopObj, var="newvar"))
extract multiple variables
head(samp(simPopObj, var=c("db030","db040")))

get/set variables in pop-object of simPopObj
head(pop(simPopObj, var="age"))
pop(simPopObj, var="newVar") <- 1
head(pop(simPopObj, var="newVar"))
deleting is also possible
pop(simPopObj, var="newvar") <- NULL
head(pop(simPopObj, var="newvar"))
extract multiple variables
head(pop(simPopObj, var=c("db030","db040")))

ghanaS Synthetic GLSS survey data

Description

This data set is synthetically generated from real GLSS (Ghana Living Standards Survey) data.

Format

A data frame with 36970 observations on the following 14 variables.

hhid integer; the household ID.

hsize integer; the number of persons in the household.

region factor; the region in which the household is located (levels western, central, greater
accra, volta, eastern, ashanti, brong ahafo, northern, upper east and upper west).

clust factor; the enumeration area.

age integer; the person’s age.

sex factor; the person’s sex (levels male and female).

relate factor; the relationship with the household head (levels head, spouse, child, grandchild,
parent/parentlaw, son/daughterlaw, other relative, adopted child, househelp and
non_relative).

nation factor; the person’s nationality (levels ghanaian birth, ghanaian naturalise, burkinabe,
malian, nigerian, ivorian, togolese, liberian, other ecowas, other africa and other).

ethnic factor; the person’s ethnicity (levels akan, all other tribes, ewe, ga-dangbe, grusi,
guan, gurma, mande and mole-dagbani).

32 ipu

religion factor; the person’s religion (levels catholic, anglican, presbyterian, methodist,
pentecostal, spiritualist, other christian, moslem, traditional, no religion and
other).

highest_degree factor; the person’s highest degree of education (levels none, mlsc, bece, voc/comm,
teacher trng a, teacher trng b, gce 'o' level, ssce, gce 'a' level, tech/prof cert,
tech/prof dip, hnd, bachelor, masters, doctorate and other).

occupation factor; the person’s occupation (levels armed forces and other security personnel,
clerks, craft and related trades workers, elementary occupations, legislators, senior
officials and managers, none, plant and machine operators and assemblers, professionals,
service workers and shop and market sales workers, skilled agricultural and fishery
workers, and technicians and associate professionals).

income numeric; the person’s annual income.

weight numeric; the sample weights.

Details

The data set consists of 8700 households and is used as sample data in some of the examples in
package simPopulation. Note that it is included for illustrative purposes only. The sample weights
do not reflect the true population sizes of Ghana and its regions. The resulting population data is
about 100 times smaller than the real population size to save computation time.

Only some of the variables in the original survey are included in this example data set. Furthermore,
categories are aggregated for certain variables due to the large number of possible outcomes in the
original survey data.

Source

This is a synthetic data set based on GLSS data from 2006. The original sample was provided by
Ghana Statistical Service.

References

Ghana Statistical Service (2008) Ghana Living Standards Survey: Report of the fifth round.

Examples

data(ghanaS)
summary(ghanaS)

ipu iterative proportional updating

Description

adjust sampling weights to given totals based on household-level and/or individual level constraints

ipu 33

Usage

ipu(inp, con, hid = NULL, eps = 1e-07, verbose = FALSE)

Arguments

inp a data.frame or data.table containing household ids (optionally), counts for
household and/or personal level attributes that should be fitted.

con named list with each list element holding a constraint total with list-names re-
lating to column-names in inp.

hid character vector specifying the variable containing household-ids within inp or
NULL if such a variable does not exist.

eps number specifiying convergence limit

verbose if TRUE, ipu will print some progress information.

Author(s)

Bernhard Meindl

Examples

library(data.table)
basic example
inp <- as.data.frame(matrix(0, nrow=8, ncol=6))
colnames(inp) <- c("hhid","hh1","hh2","p1","p2","p3")
inp$hhid <- 1:8
inp$hh1[1:3] <- 1
inp$hh2[4:8] <- 1
inp$p1 <- c(1,1,2,1,0,1,2,1)
inp$p2 <- c(1,0,1,0,2,1,1,1)
inp$p3 <- c(1,1,0,2,1,0,2,0)
con <- list(hh1=35, hh2=65, p1=91, p2=65, p3=104)
res <- ipu(inp=inp, hid="hhid", con=con, verbose=FALSE)

more sophisticated
load sample and population data
data(eusilcS)
data(eusilcP)

variable generation and preparation
eusilcS$hsize <- factor(eusilcS$hsize)

make sure, factor levels in sample and population match
eusilcP$region <- factor(eusilcP$region, levels = levels(eusilcS$db040))
eusilcP$gender <- factor(eusilcP$gender, levels = levels(eusilcS$rb090))
eusilcP$hsize <- factor(eusilcP$hsize , levels = levels(eusilcS$hsize))

generate input matrix
we want to adjust to variable "db040" (region) as household variables and
variable "rb090" (gender) as individual information

34 manageSimPopObj

library(data.table)
samp <- data.table(eusilcS)
pop <- data.table(eusilcP)
setkeyv(samp, "db030")
hh <- samp[!duplicated(samp$db030),]
hhpop <- pop[!duplicated(pop$hid),]

reg contains for each region the number of households
reg <- data.table(model.matrix(~db040 +0, data=hh))
hsize contains for each household size the number of households
hsize <- data.table(model.matrix(~factor(hsize) +0, data=hh))

aggregate persons-level characteristics per household
gender contains for each household the number of males and females
gender <- data.table(model.matrix(~db030+rb090 +0, data=samp))
setkeyv(gender, "db030")
gender <- gender[, lapply(.SD, sum), by = key(gender)]

bind together and use it as input
inp <- cbind(reg, hsize, gender)

the totals we want to calibrate to
con <- c(

as.list(xtabs(rep(1, nrow(hhpop)) ~ hhpop$region)),
as.list(xtabs(rep(1, nrow(hhpop)) ~ hhpop$hsize)),
as.list(xtabs(rep(1, nrow(eusilcP)) ~ eusilcP$gender))

)
we need to have the same names as in 'inp'
names(con) <- setdiff(names(inp), "db030")

run ipu und check results
res <- ipu(inp=inp, hid="db030", con=con, verbose=TRUE)

is <- sapply(2:(ncol(res)-1), function(x) {
sum(res[,x]*res$weights)

})
data.frame(required=unlist(con), is=is)

manageSimPopObj get and set variables from population or sample data stored in an ob-
ject of class simPopObj.

Description

This functions allows to get or set variables in slots pop and sample of simPopObj-objects. This is
a utility function that is useful for writing custom wrapper functions.

Usage

manageSimPopObj(x, var, sample = FALSE, set = FALSE, values = NULL)

quantileWt 35

Arguments

x an object of class simPopObj.

var character vector of length 1; variable name that should be set or extracted.

sample a logical indicating whether var should be extracted/set from slot ’sample’ (TRUE)
or slot ’pop’ (FALSE).

set logical; if TRUE, argument ’values’ is set to either the sample or population data
stored in ’x’, depending on argument ’sample’. If FALSE, the desired variable
given by ’var’ is returned from either the sample or the pop slot of ’x’.

values vector; if ’set’ is TRUE, then this vector is used to update the variable of sample
or population data depending of choice of argument ’sample’.

Value

An object of class simPopObj (if ’set’ is TRUE) or a vector (if ’set’ is FALSE).

Author(s)

Bernhard Meindl and Matthias Templ

Examples

data(eusilcS)
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040",

weight="db090")
simPopObj <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))

(manageSimPopObj(simPopObj, var="age", sample=FALSE, set=FALSE))
(manageSimPopObj(simPopObj, var="age", sample=TRUE, set=FALSE))

quantileWt Weighted sample quantiles

Description

Compute quantiles taking into account sample weights. The following methods are implemented:

• quantileWt.default(x, weights=NULL, probs=seq(0, 1, 0.25), na.rm=TRUE, ...)

• quantileWt.dataObj(x, vars, probs=seq(0, 1, 0.25), na.rm=TRUE, ...)

Additional parameters are:

• weights an optional numeric vector containing sample weights.

• vars a character vector of length 1 specifying a variable name that is available in the data-slot
of x and which is used for the calculation.

• probs a numeric vector of probabilities with values in [0, 1].

• na.rm a logical indicating whether any NA or NaN values should be removed from x before the
quantiles are computed. Note that the default is TRUE, contrary to the function quantile.

36 quantileWt

Usage

quantileWt(x, ...)

Arguments

x a numeric vector.

... for the generic function quantileWt additional arguments to be passed to meth-
ods. Additional arguments not included in the definition of the methods are
currently ignored.

Details

If weights are not specified then quantile(x, probs, na.rm=na.rm,names=FALSE, type=1) is
used for the computation.

Note probabilities outside [0, 1] cause an error.

Value

A vector of the (weighted) sample quantiles.

Author(s)

Stefan Kraft and Bernhard Meindl

A basic version of this function was provided by Cedric Beguin and Beat Hulliger.

See Also

quantile

Examples

data(eusilcS)
(quantileWt(eusilcS$netIncome, weights=eusilcS$rb050))

dataObj-method
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
(quantileWt(inp, vars="netIncome"))

sampHH 37

sampHH Sample households from given microdata.

Description

The function samples households from microdata containing personal and household information.

Usage

sampHH(pop, sizefactor = 1, hid = "hid", strata = "region", hsize = NULL)

Arguments

pop data frame containing households and persons

sizefactor factor of how many times the initial population should be resampled

hid string specifying the name of the household-id variable in the data.

strata can be used to sample within strata.

hsize string specifying the name of the household size variable in the data.

Details

households are drawn from the data and new ID’s are generated for the new households.

Value

the data frame of new households.

Author(s)

Bernhard Meindl, Matthias Templ and Johannes Gussenbauer

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi: 10.18637/jss.v079.i10

Examples

data(eusilcP)
pop <- eusilcP
colnames(pop)[3] <- "hhsize"

system.time(x1 <- sampHH(pop, strata="region", hsize="hhsize"))
dim(x1)
Not run:
approx. 10 second computation time ...

38 silcTools2

system.time(x1 <- sampHH(pop, sizefactor=4, strata="region", hsize="hhsize"))
dim(x1)
system.time(x2 <- sampHH(pop, strata=NULL, hsize="hhsize"))

pop <- pop[,-which(colnames(pop)=="hhsize")]
system.time(y1 <- sampHH(pop, strata="region", hsize=NULL))
system.time(y2 <- sampHH(pop, strata=NULL, hsize=NULL))

End(Not run)

silcTools2 Utility functions for EU-SILC data

Description

Various utility functions mainly used for simulating EU-SILC data

Usage

loadSILC(
file = NULL,
filed = NULL,
filer = NULL,
filep = NULL,
fileh = NULL,
year = 2013,
country = "Austria"

)

mergeSILC(filed, filer, fileh, filep)

checkCol(x, y)

chooseSILCvars(
x,
vars = c("db030", "db040", "rb030", "rb080", "rb090", "pl031", "pb220a", "py010g",
"py021g", "py050g", "py080g", "py090g", "py100g", "py110g", "py120g", "py130g",
"py140g", "hy040g", "hy050g", "hy060g", "hy070g", "hy080g", "hy090g", "hy100g",
"hy110g", "hy120g", "hy130g", "hy140g", "db090", "rb050", "pb190", "pe040", "pl051",
"pl111", "rb010"),

country = NULL
)

modifySILC(x, country = "Austria")

silcTools2 39

Arguments

file data set in R binary format, csv or sav (SPSS) of merged EU-SILC data.

filed data set including the household register information

filer data set including the personal register information

filep data set including the personal information

fileh data set including the household information

year year of origin

country country

x public-use file (for checkCol function) or orginal data

y scientific-use file (for checkCol function)

vars variables to be selected for function chooseSILCvars

Details

Collection of functions to import, select and modify data EU-SILC data. Either file (merged data)
or single files have to be provided for loadSILC().

Author(s)

Matthias Templ

Examples

Not run:
x <- loadSILC("new_workfile.RData")
filed <- "zielvar_d_eurostat2013.sav"
filer <- "zielvar_r_eurostat2013.sav"
filep <- "zielvar_p_eurostat2013.sav"
fileh <- "zielvar_h_eurostat2013.sav"
suf4 <- loadSILC(filed = filed,

filer = filer,
filep = filep,
fileh = fileh)

End(Not run)
Not run:
filed <- "zielvar_d_eurostat2013.sav"
filer <- "zielvar_r_eurostat2013.sav"
filep <- "zielvar_p_eurostat2013.sav"
fileh <- "zielvar_h_eurostat2013.sav"
suf4 <- loadSILC(filed = filed,

filer = filer,
filep = filep,
fileh = fileh)

suf <- mergeSILC(d = suf4[["d"]],
r = suf4[["r"]],
h = suf4[["h"]],
p = suf4[["p"]])

40 simCategorical

End(Not run)
data(eusilc13puf)
instead of scientific-use file or
original data we took the 2006 synthetic data
data(eusilcS)
check which columns of y are in x
checkCol(eusilc13puf, eusilcS)
Not run:
on original silc data to extract needed variables for SGA project on SILC
x <- loadSILC("new_workfile.RData")
chooseSILCvars(x)

End(Not run)
Not run:
wrapper to prepare SILC data
on original silc data
x <- loadSILC("new_workfile.RData")
x <- chooseSILCvars(x)
modifySILC(x)

End(Not run)

simCategorical Simulate categorical variables of population data

Description

Simulate categorical variables of population data. The household structure of the population data
needs to be simulated beforehand.

Usage

simCategorical(
simPopObj,
additional,
method = c("multinom", "distribution", "ctree", "cforest", "ranger", "xgboost"),
limit = NULL,
censor = NULL,
maxit = 500,
MaxNWts = 1500,
eps = NULL,
nr_cpus = NULL,
regModel = NULL,
seed = 1,
verbose = FALSE,
by = "strata",
model_params = NULL

)

simCategorical 41

Arguments

simPopObj a simPopObj containing population and household survey data as well as op-
tionally margins in standardized format.

additional a character vector specifying additional categorical variables available in the
sample object of simPopObj that should be simulated for the population data.

method a character string specifying the method to be used for simulating the additional
categorical variables. Accepted values are "multinom" (estimation of the con-
ditional probabilities using multinomial log-linear models and random draws
from the resulting distributions) or "distribution" (random draws from the
observed conditional distributions of their multivariate realizations). "ctree"
for using Classification trees "cforest" for using random forest (implemen-
tation in package party) "ranger" for using random forest (implementation in
package ranger) "xgboost" for using xgboost (implementation in package xg-
boost)

limit if method is "multinom", this can be used to account for structural zeros. If only
one additional variable is requested, a named list of lists should be supplied. The
names of the list components specify the predictor variables for which to limit
the possible outcomes of the response. For each predictor, a list containing the
possible outcomes of the response for each category of the predictor can be
supplied. The probabilities of other outcomes conditional on combinations that
contain the specified categories of the supplied predictors are set to 0. If more
than one additional variable is requested, such a list of lists can be supplied for
each variable as a component of yet another list, with the component names
specifying the respective variables.

censor if method is "multinom", this can be used to account for structural zeros. If
only one additional variable is requested, a named list of lists or data.frames
should be supplied. The names of the list components specify the categories
that should be censored. For each of these categories, a list or data.frame
containing levels of the predictor variables can be supplied. The probability of
the specified categories is set to 0 for the respective predictor levels. If more
than one additional variable is requested, such a list of lists or data.frames
can be supplied for each variable as a component of yet another list, with the
component names specifying the respective variables.

maxit, MaxNWts control parameters to be passed to multinom and nnet. See the help file for
nnet.

eps a small positive numeric value, or NULL (the default). In the former case and if
method is "multinom", estimated probabilities smaller than this are assumed to
result from structural zeros and are set to exactly 0.

nr_cpus if specified, an integer number defining the number of cpus that should be used
for parallel processing.

regModel allows to specify the variables or model that is used when simulating addi-
tional categorical variables. The following choices are available if different from
NULL.

• ’basic’only the basic household variables (generated with simStructure)
are used.

42 simCategorical

• ’available’all available variables (that are common in the sample and the
synthetic population such as previously generated varaibles) excluding id-
variables, strata variables and household sizes are used for the modelling.
This parameter should be used with care because all factors are automati-
cally used as factors internally.

• formula-objectUsers may also specify a specifiy formula (class ’formula’)
that will be used. Checks are performed that all required variables are avail-
able.

If method ’distribution’ is used, it is only possible to specify a vector of length
one containing one of the choices described above. If parameter ’regModel’ is
NULL, only basic household variables are used in any case.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

verbose set to TRUE if additional print output should be shown.
by defining which variable to use as split up variable of the estimation. Defaults to

the strata variable.
model_params NULL or a named list which can contain model specific parameters which will

be passed onto the function call for the respective model.

Details

The number of cpus are selected automatically in the following manner. The number of cpus is equal
the number of strata. However, if the number of cpus is less than the number of strata, the number
of cpus - 1 is used by default. This should be the best strategy, but the user can also overwrite this
decision.

Value

An object of class simPopObj containing survey data as well as the simulated population data in-
cluding the categorical variables specified by argument additional.

Note

The basic household structure needs to be simulated beforehand with the function simStructure.

Author(s)

Bernhard Meindl, Andreas Alfons, Stefan Kraft, Alexander Kowarik, Matthias Templ, Siro Fritz-
mann

References

B. Meindl, M. Templ, A. Kowarik, O. Dupriez (2017) Simulation of Synthetic Populations for
Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10), 1–38.
doi:10.18637/jss.v079.i10

A. Alfons, M. Templ (2011) Simulation of close-to-reality population data for household surveys
with application to EU-SILC. Statistical Methods & Applications, 20 (3), 383–407. doi:10.1080/
02664763.2013.859237

https://doi.org/10.18637/jss.v079.i10
https://doi.org/10.1080/02664763.2013.859237
https://doi.org/10.1080/02664763.2013.859237

simComponents 43

See Also

simStructure, simRelation, simContinuous, simComponents

Examples

data(eusilcS) # load sample data
Not run:
approx. 20 seconds computation time
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
in the following, nr_cpus are selected automatically
simPop <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))
simPop <- simCategorical(simPop, additional=c("pl030", "pb220a"), method="multinom", nr_cpus=1)
simPop

End(Not run)

simComponents Simulate components of continuous variables of population data

Description

Simulate components of continuous variables of population data by resampling fractions from sur-
vey data. The continuous variable to be split and any categorical conditioning variables need to be
simulated beforehand.

Usage

simComponents(
simPopObj,
total = "netIncome",
components = c("py010n", "py050n", "py090n", "py100n", "py110n", "py120n", "py130n",

"py140n"),
conditional = c(getCatName(total), "pl030"),
replaceEmpty = c("sequential", "min"),
seed

)

Arguments

simPopObj a simPopObj-object.

total a character string specifying the continuous variable of dataP that should be split
into components. Currently, only one variable can be split at a time.

components a character vector specifying the components in dataS that should be simulated
for the population data.

conditional an optional character vector specifying categorical conditioning variables for
resampling. The fractions occurring in dataS are then drawn from the respective
subsets defined by these variables.

44 simComponents

replaceEmpty a character string; if conditional specifies at least two conditioning variables,
this determines how replacement cells for empty subsets in the sample are ob-
tained. If "sequential", the conditioning variables are browsed sequentially
such that replacement cells have the same value in one conditioning variable
and minimum Manhattan distance in the other conditioning variables. If no
such cells exist, replacement cells with minimum overall Manhattan distance
are selected. The latter is always done if this is "min" or only one conditioning
variable is used.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

Value

An object of class simPopObj containing survey data as well as the simulated population data in-
cluding the components of the continuous variable specified by total and components.

Note

The basic household structure, any categorical conditioning variables and the continuous variable to
be split need to be simulated beforehand with the functions simStructure, simCategorical and
simContinuous.

Author(s)

Stefan Kraft and Andreas Alfons and Bernhard Meindl

References

B. Meindl, M. Templ, A. Kowarik, O. Dupriez (2017) Simulation of Synthetic Populations for
Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10), 1–38.
doi:10.18637/jss.v079.i10

A. Alfons, M. Templ (2011) Simulation of close-to-reality population data for household surveys
with application to EU-SILC. Statistical Methods & Applications, 20 (3), 383–407. doi:10.1080/
02664763.2013.859237

See Also

simStructure, simCategorical, simContinuous, simEUSILC

Examples

data(eusilcS)
Not run:
approx. 20 seconds computation time
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize",

strata="db040", weight="db090")
simPopObj <- simStructure(data=inp, method="direct",

basicHHvars=c("age", "rb090", "hsize", "pl030", "pb220a"))
simPopObj <- simContinuous(simPopObj, additional = "netIncome",

https://doi.org/10.18637/jss.v079.i10
https://doi.org/10.1080/02664763.2013.859237
https://doi.org/10.1080/02664763.2013.859237

simContinuous 45

regModel = ~rb090+hsize+pl030+pb220a+hsize,
method="multinom", upper=200000, equidist=FALSE, nr_cpus=1)

categorize net income for use as conditioning variable
sIncome <- manageSimPopObj(simPopObj, var="netIncome", sample=TRUE, set=FALSE)
sWeight <- manageSimPopObj(simPopObj, var="rb050", sample=TRUE, set=FALSE)
pIncome <- manageSimPopObj(simPopObj, var="netIncome", sample=FALSE, set=FALSE)

breaks <- getBreaks(x=unlist(sIncome), w=unlist(sWeight), upper=Inf, equidist=FALSE)
simPopObj <- manageSimPopObj(simPopObj, var="netIncomeCat", sample=TRUE,

set=TRUE, values=getCat(x=unlist(sIncome), breaks))
simPopObj <- manageSimPopObj(simPopObj, var="netIncomeCat", sample=FALSE,

set=TRUE, values=getCat(x=unlist(pIncome), breaks))

simulate net income components
simPopObj <- simComponents(simPopObj=simPopObj, total="netIncome",
components=c("py010n","py050n","py090n","py100n","py110n","py120n","py130n","py140n"),
conditional = c("netIncomeCat", "pl030"), replaceEmpty = "sequential", seed=1)

class(simPopObj)

End(Not run)

simContinuous Simulate continuous variables of population data

Description

Simulate continuous variables of population data using multinomial log-linear models combined
with random draws from the resulting categories or (two-step) regression models combined with
random error terms. The household structure of the population data and any other categorical pre-
dictors need to be simulated beforehand.

Usage

simContinuous(
simPopObj,
additional = "netIncome",
method = c("multinom", "lm", "poisson", "xgboost"),
zeros = TRUE,
breaks = NULL,
lower = NULL,
upper = NULL,
equidist = TRUE,
probs = NULL,
gpd = TRUE,
threshold = NULL,
est = "moments",
limit = NULL,

46 simContinuous

censor = NULL,
log = TRUE,
const = NULL,
alpha = 0.01,
residuals = TRUE,
keep = TRUE,
maxit = 500,
MaxNWts = 1500,
tol = .Machine$double.eps^0.5,
nr_cpus = NULL,
eps = NULL,
regModel = "basic",
byHousehold = NULL,
imputeMissings = FALSE,
seed,
verbose = FALSE,
by = "strata",
model_params = NULL

)

Arguments

simPopObj a simPopObj holding household survey data, population data and optionally
some margins.

additional a character string specifying the additional continuous variable of dataS that
should be simulated for the population data. Currently, only one additional vari-
able can be simulated at a time.

method a character string specifying the method to be used for simulating the continu-
ous variable. Accepted values are "multinom", for using multinomial log-linear
models combined with random draws from the resulting categories, "lm", for us-
ing (two-step) regression models combined with random error terms, "poisson"
for using Poisson regression for count variables, and "xgboost" for using XG-
Boost.

zeros a logical indicating whether the variable specified by additional is semi-continuous,
i.e., contains a considerable amount of zeros. If TRUE and method is "multinom",
a separate factor level for zeros in the response is used. If TRUE and method is
"lm", a two-step model is applied. The first step thereby uses a log-linear or
multinomial log-linear model (see “Details”).

breaks an optional numeric vector; if multinomial models are computed, this can be
used to supply two or more break points for categorizing the variable specified
by additional. If NULL, break points are computed using weighted quantiles.

lower, upper optional numeric values; if multinomial models are computed and breaks is
NULL, these can be used to specify lower and upper bounds other than minimum
and maximum, respectively. Note that if method is "multinom" and gpd is TRUE
(see below), upper defaults to Inf.

equidist logical; if method is "multinom" and breaks is NULL, this indicates whether the
(positive) default break points should be equidistant or whether there should be
refinements in the lower and upper tail (see getBreaks).

simContinuous 47

probs numeric vector with values in [0, 1]; if method is "multinom" and breaks is
NULL, this gives probabilities for quantiles to be used as (positive) break points.
If supplied, this is preferred over equidist.

gpd logical; if method is "multinom", this indicates whether the upper tail of the
variable specified by additional should be simulated by random draws from a
(truncated) generalized Pareto distribution rather than a uniform distribution.

threshold a numeric value; if method is "multinom", values for categories above threshold
are drawn from a (truncated) generalized Pareto distribution.

est a character string; if method is "multinom", the estimator to be used to fit the
generalized Pareto distribution.

limit an optional named list of lists; if multinomial models are computed, this can be
used to account for structural zeros. The names of the list components specify
the predictor variables for which to limit the possible outcomes of the response.
For each predictor, a list containing the possible outcomes of the response for
each category of the predictor can be supplied. The probabilities of other out-
comes conditional on combinations that contain the specified categories of the
supplied predictors are set to 0. Currently, this is only implemented for more
than two categories in the response.

censor an optional named list of lists or data.frames; if multinomial models are com-
puted, this can be used to account for structural zeros. The names of the list
components specify the categories that should be censored. For each of these
categories, a list or data.frame containing levels of the predictor variables can
be supplied. The probability of the specified categories is set to 0 for the re-
spective predictor levels. Currently, this is only implemented for more than two
categories in the response.

log logical; if method is "lm", this indicates whether the linear model should be
fitted to the logarithms of the variable specified by additional. The predicted
values are then back-transformed with the exponential function. See “Details”
for more information.

const numeric; if method is "lm" and log is TRUE, this gives a constant to be added
before log transformation.

alpha numeric; if method is "lm", this gives trimming parameters for the sample data.
Trimming is thereby done with respect to the variable specified by additional.
If a numeric vector of length two is supplied, the first element gives the trimming
proportion for the lower part and the second element the trimming proportion for
the upper part. If a single numeric is supplied, it is used for both. With NULL,
trimming is suppressed.

residuals logical; if method is "lm", this indicates whether the random error terms should
be obtained by draws from the residuals. If FALSE, they are drawn from a normal
distribution (median and MAD of the residuals are used as parameters).

keep logical; if multinomial models are computed, this indicates whether the simu-
lated categories should be stored as a variable in the resulting population data.
If TRUE, the corresponding column name is given by additional with postfix
"Cat".

maxit, MaxNWts control parameters to be passed to multinom and nnet. See the help file for
nnet.

48 simContinuous

tol if method is "lm" and zeros is TRUE, a small positive numeric value or NULL.
When fitting a log-linear model within a stratum, factor levels may not exist in
the sample but are likely to exist in the population. However, the coefficient for
such factor levels will be 0. Therefore, coefficients smaller than tol in absolute
value are replaced by coefficients from an auxiliary model that is fit to the whole
sample. If NULL, no auxiliary log-linear model is computed and no coefficients
are replaced.

nr_cpus if specified, an integer number defining the number of cpus that should be used
for parallel processing.

eps a small positive numeric value, or NULL (the default). In the former case and if
(multinomial) log-linear models are computed, estimated probabilities smaller
than this are assumed to result from structural zeros and are set to exactly 0.

regModel allows to specify the model that should be for the simulation of the additional
continuous variable. The following choices are possible:

• ’basic’only the basic household-variables (generated with simStructure)
are used.

• ’available’all available variables (that are common in the sample and the
syntetic population (e.g. previously generated variables) are used for the
modeling. Should be used with care because all variables are automatically
used as factors!

• formula-object: Users may also specify a specific formula (class ’formula’)
that will be used. Checks are performed that all required variables are avail-
able.

byHousehold if NULL, simulated values are used as is. If either 'sum', 'mean' or 'random'
is specified, the values are aggregated and each member of the household gets
the same value (mean, sum or a random value) assigned.

imputeMissings if TRUE, missing values in variables that are used for the underlying model are
imputed using hock-deck.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

verbose (logical) if TRUE, additional output is written to the promt
by defining which variable to use as split up variable of the estimation. Defaults to

the strata variable.
model_params adding optional parameter to the model, at the moment only implemented for

xgboost hyperparameters

Details

If method is "lm", the behavior for two-step models is described in the following.

If zeros is TRUE and log is not TRUE or the variable specified by additional does not contain
negative values, a log-linear model is used to predict whether an observation is zero or not. Then a
linear model is used to predict the non-zero values.

If zeros is TRUE, log is TRUE and const is specified, again a log-linear model is used to predict
whether an observation is zero or not. In the linear model to predict the non-zero values, const is
added to the variable specified by additional before the logarithms are taken.

simContinuous 49

If zeros is TRUE, log is TRUE, const is NULL and there are negative values, a multinomial log-linear
model is used to predict negative, zero and positive observations. Categories for the negative values
are thereby defined by breaks. In the second step, a linear model is used to predict the positive
values and negative values are drawn from uniform distributions in the respective classes.

If zeros is FALSE, log is TRUE and const is NULL, a two-step model is used if there are non-positive
values in the variable specified by additional. Whether a log-linear or a multinomial log-linear
model is used depends on the number of categories to be used for the non-positive values, as defined
by breaks. Again, positive values are then predicted with a linear model and non-positive values
are drawn from uniform distributions.

The number of cpus are selected automatically in the following manner. The number of cpus is equal
the number of strata. However, if the number of cpus is less than the number of strata, the number
of cpus - 1 is used by default. This should be the best strategy, but the user can also overwrite this
decision.

Value

An object of class simPopObj containing survey data as well as the simulated population data in-
cluding the continuous variable specified by additional and possibly simulated categories for the
desired continous variable.

Note

The basic household structure and any other categorical predictors need to be simulated beforehand
with the functions simStructure and simCategorical, respectively.

Author(s)

Bernhard Meindl, Andreas Alfons, Alexander Kowarik (based on code by Stefan Kraft), Siro Fritz-
mann

References

B. Meindl, M. Templ, A. Kowarik, O. Dupriez (2017) Simulation of Synthetic Populations for
Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10), 1–38.
doi:10.18637/jss.v079.i10

A. Alfons, M. Templ (2011) Simulation of close-to-reality population data for household surveys
with application to EU-SILC. Statistical Methods & Applications, 20 (3), 383–407. doi:10.1080/
02664763.2013.859237

See Also

simStructure, simCategorical, simComponents, simEUSILC

Examples

data(eusilcS)
Not run:
approx. 20 seconds computation time
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")

https://doi.org/10.18637/jss.v079.i10
https://doi.org/10.1080/02664763.2013.859237
https://doi.org/10.1080/02664763.2013.859237

50 simEUSILC

simPop <- simStructure(data=inp, method="direct",
basicHHvars=c("age", "rb090", "hsize", "pl030", "pb220a"))

regModel = ~rb090+hsize+pl030+pb220a

multinomial model with random draws
eusilcM <- simContinuous(simPop, additional="netIncome",

regModel = regModel,
upper=200000, equidist=FALSE, nr_cpus=1)

class(eusilcM)

two-step regression
eusilcT <- simContinuous(simPop, additional="netIncome",

regModel = "basic",
method = "lm", nr_cpus=1)

class(eusilcT)

End(Not run)

simEUSILC Simulate EU-SILC population data

Description

Simulate population data for the European Statistics on Income and Living Conditions (EU-SILC).

Usage

simEUSILC(
dataS,
hid = "db030",
wh = "db090",
wp = "rb050",
hsize = NULL,
strata = "db040",
pid = NULL,
age = "age",
gender = "rb090",
categorizeAge = TRUE,
breaksAge = NULL,
categorical = c("pl030", "pb220a"),
income = "netIncome",
method = c("multinom", "twostep"),
breaks = NULL,
lower = NULL,
upper = NULL,
equidist = TRUE,

simEUSILC 51

probs = NULL,
gpd = TRUE,
threshold = NULL,
est = "moments",
const = NULL,
alpha = 0.01,
residuals = TRUE,
components = c("py010n", "py050n", "py090n", "py100n", "py110n", "py120n", "py130n",

"py140n"),
conditional = c(getCatName(income), "pl030"),
keep = TRUE,
maxit = 500,
MaxNWts = 1500,
tol = .Machine$double.eps^0.5,
nr_cpus = NULL,
seed

)

Arguments

dataS a data.frame containing EU-SILC survey data.

hid a character string specifying the column of dataS that contains the household
ID.

wh a character string specifying the column of dataS that contains the household
sample weights.

wp a character string specifying the column of dataS that contains the personal
sample weights.

hsize an optional character string specifying a column of dataS that contains the
household size. If NULL, the household sizes are computed.

strata a character string specifying the column of dataS that define strata. Note that
this is currently a required argument and only one stratification variable is sup-
ported.

pid an optional character string specifying a column of dataS that contains the per-
sonal ID.

age a character string specifying the column of dataS that contains the age of the
persons (to be used for setting up the household structure).

gender a character string specifying the column of dataS that contains the gender of the
persons (to be used for setting up the household structure).

categorizeAge a logical indicating whether age categories should be used for simulating addi-
tional categorical and continuous variables to decrease computation time.

breaksAge numeric; if categorizeAge is TRUE, an optional vector of two or more break
points for constructing age categories, otherwise ignored.

categorical a character vector specifying additional categorical variables of dataS that should
be simulated for the population data.

income a character string specifying the variable of dataS that contains the personal
income (to be simulated for the population data).

52 simEUSILC

method a character string specifying the method to be used for simulating personal in-
come. Accepted values are "multinom" (for using multinomial log-linear mod-
els combined with random draws from the resulting ategories) and "twostep"
(for using two-step regression models combined with random error terms).

breaks if method is "multinom", an optional numeric vector of two or more break
points for categorizing the personal income. If missing, break points are com-
puted using weighted quantiles.

lower, upper numeric values; if method is "multinom" and breaks is NULL, these can be
used to specify lower and upper bounds other than minimum and maximum,
respectively. Note that if gpd is TRUE (see below), upper defaults to Inf.

equidist logical; if method is "multinom" and breaks is NULL, this indicates whether the
(positive) default break points should be equidistant or whether there should be
refinements in the lower and upper tail (see getBreaks).

probs numeric vector with values in [0, 1]; if method is "multinom" and breaks is
NULL, this gives probabilities for quantiles to be used as (positive) break points.
If supplied, this is preferred over equidist.

gpd logical; if method is "multinom", this indicates whether the upper tail of the
personal income should be simulated by random draws from a (truncated) gen-
eralized Pareto distribution rather than a uniform distribution.

threshold a numeric value; if method is "multinom", values for categories above threshold
are drawn from a (truncated) generalized Pareto distribution.

est a character string; if method is "multinom", the estimator to be used to fit the
generalized Pareto distribution.

const numeric; if method is "twostep", this gives a constant to be added before log
transformation.

alpha numeric; if method is "twostep", this gives trimming parameters for the sam-
ple data. Trimming is thereby done with respect to the variable specified by
additional. If a numeric vector of length two is supplied, the first element
gives the trimming proportion for the lower part and the second element the
trimming proportion for the upper part. If a single numeric is supplied, it is used
for both. With NULL, trimming is suppressed.

residuals logical; if method is "twostep", this indicates whether the random error terms
should be obtained by draws from the residuals. If FALSE, they are drawn from a
normal distribution (median and MAD of the residuals are used as parameters).

components a character vector specifying the income components in dataS (to be simulated
for the population data).

conditional an optional character vector specifying categorical contitioning variables for re-
sampling of the income components. The fractions occurring in dataS are then
drawn from the respective subsets defined by these variables.

keep a logical indicating whether variables computed internally in the procedure (such
as the original IDs of the corresponding households in the underlying sample,
age categories or income categories) should be stored in the resulting population
data.

maxit, MaxNWts control parameters to be passed to multinom and nnet. See the help file for
nnet.

simEUSILC 53

tol if method is "twostep", a small positive numeric value or NULL (see simContinuous).

nr_cpus if specified, an integer number defining the number of cpus that should be used
for parallel processing.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

Value

An object of class simPopObj containing the simulated EU-SILC population data as well as the
underlying sample.

Note

This is a wrapper calling simStructure, simCategorical, simContinuous and simComponents.

Author(s)

Andreas Alfons and Stefan Kraft and Bernhard Meindl

See Also

simStructure, simCategorical, simContinuous, simComponents

Examples

data(eusilcS) # load sample data

Not run:
long computation time
multinomial model with random draws
eusilcM <- simEUSILC(eusilcS, upper = 200000, equidist = FALSE
, nr_cpus = 1)
summary(eusilcM)

two-step regression
eusilcT <- simEUSILC(eusilcS, method = "twostep", nr_cpus = 1)
summary(eusilcT)

End(Not run)

54 simInitSpatial

simInitSpatial Generation of smaller regions given an existing spatial variable and a
table.

Description

This function allows to manipulate an object of class simPopObj in a way that a new variable
containing smaller regions within an already existing broader region is generated. The distribution
of the smaller region within the broader region is respected.

Usage

simInitSpatial(
simPopObj,
additional,
region,
tspatialP = NULL,
tspatialHH = NULL,
eps = 0.05,
maxIter = 100,
nr_cpus = NULL,
seed = 1,
verbose = FALSE

)

Arguments

simPopObj an object of class simPopObj.

additional a character vector of length one holding the variable name of the variable con-
taining smaller geographical units. This variable name must be available as a
column in input argument tspatial.

region a character vector of length one holding the variable name of the broader region.
This variable must be available in the input tspatial as well as in the sample
and population slots of input simPopObj.

tspatialP a data.frame (or data.table) containing three columns. The broader region (with
the variable name being the same as in input region, the smaller geographical
units (with the variable name being the same as in input additional) and a third
column containing a numeric vector holding counts of persons. This argument
or tspatialHH has to be provided.

tspatialHH a data.frame (or data.table) containing three columns. The broader region (with
the variable name being the same as in input region, the smaller geographical
units (with the variable name being the same as in input additional) and a
third column containing a numeric vector holding counts of households. This
argument or tspatialP has to be provided.

eps relative deviation of person counts if person and household counts are provided

simInitSpatial 55

maxIter maximum number of iteration for adjustment if person and household counts are
provided

nr_cpus if specified, an integer number defining the number of cpus that should be used
for parallel processing.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

verbose TRUE/FALSE if some information should be shown during the process

Details

The distributional information must be contained in an input table that holds combinations of char-
acteristics of the broader region and the smaller regions as well as population counts (which may
be available from a census).

Value

An object of class simPopObj with an additional variable in the synthetic population slot.

Author(s)

Bernhard Meindl and Alexander Kowarik

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi:10.18637/jss.v079.i10

Examples

library(data.table)
data(eusilcS)
data(eusilcP)
library(data.table)

no districts are available in the population, so we have to generate those
we randomly assign districts within "region" in the eusilc population data
each hh has the same district
simulate_districts <- function(inp) {

hhid <- "hid"
region <- "region"

a <- inp[!duplicated(inp[,hhid]),c(hhid, region)]
spl <- split(a, a[,region])
regions <- unique(inp[,region])

tmpres <- lapply(1:length(spl), function(x) {
codes <- paste(x, 1:sample(3:9,1), sep="")
spl[[x]]$district <- sample(codes, nrow(spl[[x]]), replace=TRUE)

https://doi.org/10.18637/jss.v079.i10

56 simple_dis

spl[[x]]
})
tmpres <- do.call("rbind", tmpres)
tmpres <- tmpres[,-c(2)]
out <- merge(inp, tmpres, by.x=c(hhid), by.y=hhid, all.x=TRUE)
invisible(out)

}

eusilcP <- data.table(simulate_districts(eusilcP))
we generate the input table using the broad region (variable 'region')
and the districts, we have generated before.
#Generate table with household counts by district
tabHH <- eusilcP[!duplicated(hid),.(Freq=.N),by=.(db040=region,district)]
setkey(tabHH,db040,district)
#Generate table with person counts by district
tabP <- eusilcP[,.(Freq=.N),by=.(db040=region,district)]
setkey(tabP,db040,district)

we generate a synthetic population
setnames(eusilcP,"region","db040")
setnames(eusilcP,"hid","db030")
inp <- specifyInput(data=eusilcP, hhid="db030", hhsize="hsize", strata="db040",population=TRUE)
Not run:
use only HH counts
simPopObj <- simStructure(data=inp, method="direct", basicHHvars=c("age", "gender"))
simPopObj1 <- simInitSpatial(simPopObj, additional="district", region="db040", tspatialHH=tabHH,
tspatialP=NULL, nr_cpus=1)

use only P counts
simPopObj <- simStructure(data=inp, method="direct", basicHHvars=c("age", "gender"))
simPopObj2 <- simInitSpatial(simPopObj, additional="district", region="db040", tspatialHH=NULL,
tspatialP=tabP, nr_cpus = 1)

use P and HH counts
simPopObj <- simStructure(data=inp, method="direct", basicHHvars=c("age", "gender"))
simPopObj3 <- simInitSpatial(simPopObj, additional="district", region="db040", tspatialHH=tabHH,
tspatialP=tabP, nr_cpus = 1)

End(Not run)

simple_dis Simple generation of new variables

Description

Fast simulation of new variables based on univariate distributions

simple_dis 57

Usage

univariate.dis(puf, data, additional, weights, value = "data", fNA = NA)

conditional.dis(
puf,
data,
additional,
conditional,
weights,
value = "data",
fNA = NA

)

Arguments

puf data for which one additional column specified by function argument ‘addi-
tional’ is simulated

data donor data

additional name of variable to be simulated

weights sampling weights from data

value if “data” then the puf including the additional variable is returned, otherwise
only the simulated vector.

fNA only used with missing values if another code as NA should be used

conditional conditioning variable

Details

Function uni.distribution: random draws from the weighted univariate distribution of the original
data

Function conditional.dis: random draws from the weighted conditional distribution (conditioned on
a factor variable)

This are simple functions to produce structural variables, variables that should have the same cate-
gories as given ones. For more advanced methods see simCategorical()

Author(s)

Lydia Spies, Matthias Templ

See Also

simCategorical

58 simPopObj-class

Examples

we don't have original data, so let's use eusilc
data(eusilc13puf)
data(eusilcS)
v1 <- univariate.dis(eusilcS, eusilc13puf, additional = "db040",
weights = "rb050", value = "vector")
table(v1)
table(eusilc13puf$db040)
we don't have original data, so let's use eusilc
##data(eusilc13puf)
##data(eusilcS)
##v1 <- conditional.dis(eusilcS, eusilc13puf, additional = "pb190",
conditional = "db040", weights = "rb050")
##table(v1) / sum(table(v1))
##table(eusilc13puf$pb190) / sum(table(eusilc13puf$pb190))

simPopObj-class Class "simPopObj"

Description

An object that is used throughout the package containing information on the sample (in slot sample),
the population (slot pop) and optionally some margins in form of a table (slot table).

Objects from the Class

Objects are automatically created in function simStructure.

Author(s)

Bernhard Meindl and Matthias Templ

See Also

dataObj

Examples

showClass("simPopObj")

show method: generate an object of class simPop first
data(eusilcS)
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
eusilcP <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))
class(eusilcP)
shows some basic information:
eusilcP

simRelation 59

simRelation Simulate categorical variables of population data

Description

Simulate categorical variables of population data taking relationships between household members
into account. The household structure of the population data needs to be simulated beforehand
using simStructure().

Usage

simRelation(
simPopObj,
relation = "relate",
head = "head",
direct = NULL,
additional,
limit = NULL,
censor = NULL,
maxit = 500,
MaxNWts = 2000,
eps = NULL,
nr_cpus = NULL,
seed = 1,
regModel = NULL,
verbose = FALSE,
method = c("multinom", "ctree", "cforest", "ranger"),
by = "strata"

)

Arguments

simPopObj a simPopObj containing population and household survey data as well as op-
tionally margins in standardized format.

relation a character string specifying the columns of dataS and dataP, respectively, that
define the relationships between the household members.

head a character string specifying the category of the variable given by relation that
identifies the household head.

direct a character string specifying categories of the variable given by relation. Sim-
ulated individuals with those categories directly inherit the values of the ad-
ditional variables from the household head. The default is NULL such that no
individuals directly inherit value from the household head.

additional a character vector specifying additional categorical variables of dataS that should
be simulated for the population data.

60 simRelation

limit this can be used to account for structural zeros. If only one additional variable is
requested, a named list of lists should be supplied. The names of the list compo-
nents specify the predictor variables for which to limit the possible outcomes of
the response. For each predictor, a list containing the possible outcomes of the
response for each category of the predictor can be supplied. The probabilities of
other outcomes conditional on combinations that contain the specified categories
of the supplied predictors are set to 0. If more than one additional variable is
requested, such a list of lists can be supplied for each variable as a component of
yet another list, with the component names specifying the respective variables.

censor this can be used to account for structural zeros. If only one additional variable is
requested, a named list of lists or data.frames should be supplied. The names
of the list components specify the categories that should be censored. For each
of these categories, a list or data.frame containing levels of the predictor vari-
ables can be supplied. The probability of the specified categories is set to 0 for
the respective predictor levels. If more than one additional variable is requested,
such a list of lists or data.frames can be supplied for each variable as a com-
ponent of yet another list, with the component names specifying the respective
variables.

maxit, MaxNWts control parameters to be passed to nnet::multinom() and nnet::nnet(). See
the help file for nnet::nnet().

eps a small positive numeric value, or NULL (the default). In the former case, esti-
mated probabilities smaller than this are assumed to result from structural zeros
and are set to exactly 0.

nr_cpus if specified, an integer number defining the number of cpus that should be used
for parallel processing.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

regModel allows to specify the variables or model that is used when simulating additional
categorical variables. The following choices are available if different from NULL.

• "basic": only the basic household variables (generated with simStructure()
are used.

• "available": all available variables (that are common in the sample and the
synthetic population such as previously generated variables) excluding id-
variables, strata variables and household sizes are used for the modeling.
This parameter should be used with care because all factors are automati-
cally used as factors internally.

• formula-object: users may also specify a formula (class ’formula’) that will
be used. Checks are performed that all required variables are available. If
parameter regModel is NULL, only basic household variables are used in
any case.

verbose set to TRUE if additional print output should be shown.

method a character string specifying the method to be used for simulating the additional
categorical variables. Accepted values are

• "multinom": estimation of the conditional probabilities using multinomial
log-linear models and random draws from the resulting distributions

simRelation 61

• "ctree": for using Classification trees
• "cforest": for using random forest (implementation in package party)
• "ranger": for using random forest (implementation in package ranger)

by defining which variable to use as split up variable of the estimation. Defaults to
the strata variable.

Details

The values of a new variable are simulated in three steps, where the second step is optional. First,
the values of the household heads are simulated with multinomial log-linear models. Second, indi-
viduals directly related to the corresponding household head (as specified by the argument direct)
inherit the value of the latter. Third, the values of the remaining individuals are simulated with
multinomial log-linear models in which the value of the respective household head is used as an
additional predictor.

The number of cpus are selected automatically in the following manner. The number of cpus is equal
the number of strata. However, if the number of cpus is less than the number of strata, the number
of cpus - 1 is used by default. This should be the best strategy, but the user can also overwrite this
decision.

Value

An object of class simPopObj containing survey data as well as the simulated population data in-
cluding the categorical variables specified by additional.

Note

The basic household structure needs to be simulated beforehand with the function simStructure().

Author(s)

Andreas Alfons and Bernhard Meindl

See Also

simStructure(), simCategorical(), simContinuous(), simComponents()

Examples

data(ghanaS) # load sample data
samp <- specifyInput(

data = ghanaS,
hhid = "hhid",
strata = "region",
weight = "weight"

)
ghanaP <- simStructure(

data = samp,
method = "direct",
basicHHvars = c("age", "sex", "relate")

)

62 simStructure

class(ghanaP)

Not run:
long computation time ...
ghanaP <- simRelation(

simPopObj = ghanaP,
relation = "relate",
head = "head",
additional = c("nation", "ethnic", "religion"), nr_cpus = 1

)
str(ghanaP)

End(Not run)

simStructure Simulate the household structure of population data

Description

Simulate basic categorical variables that define the household structure (typically variables such as
household ID, age and gender) of population data by resampling from survey data.

Usage

simStructure(
dataS,
method = c("direct", "multinom", "distribution"),
basicHHvars,
seed = 1,
MaxNWts = 1e+07

)

Arguments

dataS an object of class dataObj containing household survey data that is usually gen-
erated with specifyInput.

method a character string specifying the method to be used for simulating the household
sizes. Accepted values are "direct" (estimation of the population totals for
each combination of stratum and household size using the Horvitz-Thompson
estimator), "multinom" (estimation of the conditional probabilities within the
strata using a multinomial log-linear model and random draws from the result-
ing distributions), or "distribution" (random draws from the observed condi-
tional distributions within the strata).

basicHHvars a character vector specifying important variables for the household structure
that need to be available in dataS. Typically variables such as age or sex may
be used.

simStructure 63

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

MaxNWts optional; an integer value for the multinom method for controlling the maximum
number of weights.

Value

An object of class simPopObj containing the simulated population household structure as well as
the underlying sample that was provided as input.

Note

The function sample is used, which gives results incompatible with those from < 2.2.0 and produces
a warning the first time this happens in a session.

Author(s)

Bernhard Meindl and Andreas Alfons

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi:10.18637/jss.v079.i10

See Also

simCategorical, simContinuous, simComponents, simEUSILC

Examples

data(eusilcS)
Not run:
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
eusilcP <- simStructure(data=inp, method="direct", basicHHvars=c("age", "rb090"))
class(eusilcP)
eusilcP

End(Not run)

https://doi.org/10.18637/jss.v079.i10

64 spBwplotStats

spBwplotStats Weighted box plot statistics

Description

Compute the statistics necessary for producing box-and-whisker plots of continuous or semi-continuous
variables, taking into account sample weights.

Usage

spBwplotStats(x, weights = NULL, coef = 1.5, zeros = TRUE, do.out = TRUE)

Arguments

x a numeric vector.

weights an optional numeric vector containing sample weights.

coef a numeric value that determines the extension of the whiskers.

zeros a logical indicating whether the variable specified by additional is semi-continuous,
i.e., contains a considerable amount of zeros. If TRUE, the (weighted) box plot
statistics are computed for the non-zero data points only and the number of zeros
is returned, too.

do.out a logical indicating whether data points that lie beyond the extremes of the
whiskers should be returned.

Details

The function quantileWt is used for the computation of (weighted) quantiles. The median is
computed together with the first and the third quartile, which form the box. If range is positive,
the whiskers extend to the most extreme data points that have a distance to the box of no more than
coef times the interquartile range. For coef = 0, the whiskers mark the minimum and the maximum
of the sample, whereas a negative value causes an error.

Value

A list of class "spBwplotStats" with the following components:

stats A vector of length 5 containing the (weighted) statistics for the construction of
a box plot.

n if weights is NULL, the number of non-missing and, if zeros is TRUE, non-zero
data points. Otherwise the sum of the weights of the corresponding points.

nzero if zeros is TRUE and weights is NULL, the number of zeros. If zeros is TRUE
and weights is not NULL, the sum of the weights of the zeros. If zeros is not
TRUE, this is NULL.

out if do.out, the values of any data points that lie beyond the extremes of the
whiskers.

spCdf 65

Author(s)

Stefan Kraft and Andreas Alfons

See Also

spBwplot, for producing (weighted) box plots of continuous or semi-continuous variables.

quantileWt for the computation of (weighted) sample quantiles.

boxplot.stats for the unweighted statistics for box plots (not considering semi-continuous vari-
ables).

Examples

data(eusilcS)

semi-continuous variable
spBwplotStats(eusilcS$netIncome,

weights=eusilcS$rb050, do.out = FALSE)

spCdf (Weighted empirical) cumulative distribution function

Description

Compute a (weighted empirical) cumulative distribution function for survey or population data. For
survey data, sample weights are taken into account.

Usage

spCdf(x, weights = NULL, approx = FALSE, n = 10000)

Arguments

x a numeric vector.

weights an optional numeric vector containing sample weights.

approx a logical indicating whether an approximation of the cumulative distribution
function should be computed.

n a single integer value; if approx is TRUE, this specifies the number of points at
which the approximation takes place (see approx).

Details

Sample weights are taken into account by adjusting the step height. To be precise, the weighted step
height for an observation is defined as its weight divided by the sum of all weights (wi/

∑n
j=1 wj).

If requested, the approximation is performed using the function approx.

66 specifyInput

Value

A list of class "spCdf" with the following components:

x a numeric vector containing the x-coordinates.

y a numeric vector containing the y-coordinates.

approx a logical indicating whether the coordinates represent an approximation.

Author(s)

Andreas Alfons and Stefan Kraft

References

A. Alfons, M. Templ (2011) Simulation of close-to-reality population data for household surveys
with application to EU-SILC. Statistical Methods & Applications, 20 (3), 383–407. doi:10.1007/
s1026001101632

See Also

spCdfplot, ecdf, approx

Examples

data(eusilcS)
cdfS <- spCdf(eusilcS$netIncome, weights = eusilcS$rb050)
plot(cdfS, type="s")

specifyInput create an object of class ’dataObj’ required for further processing

Description

create an standardized input object of class ’dataObj’ containing information on weights, household
ids, household sizes, person ids and optionally strata. Outputs of this function are typically used in
simStructure.

Usage

specifyInput(
data,
hhid,
hhsize = NULL,
pid = NULL,
weight = NULL,
strata = NULL,
population = FALSE

)

https://doi.org/10.1007/s10260-011-0163-2
https://doi.org/10.1007/s10260-011-0163-2

spMosaic 67

Arguments

data a data.frame or data.table featuring sample data.

hhid character vector of length 1 specifying variable containing household ids within
slot data.

hhsize character vector of length 1 specifying variable containing household sizes within
slot data. If NULL, household sizes are automatically calculated.

pid character vector of length 1 specifying variable containing person ids within slot
data. If NULL, person ids are automatically calculated.

weight character vector of length 1 specifying variable holding sampling weights within
slot data.

strata character vector of length 1 specifing variable name within slot data of variable
holding information on strata, e.g. regions or NULL if such variable does not
exist.

population TRUE/FALSE vector of length 1 specifing if the data object is a sample or a
population NULL if such variable does not exist.

Author(s)

Bernhard Meindl

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi:10.18637/jss.v079.i10

Examples

data(eusilcS)
inp <- specifyInput(data=eusilcS, hhid="db030", weight="rb050", strata="db040")
class(inp)
inp

spMosaic Mosaic plots of expected and realized population sizes

Description

Create mosaic plots of expected (i.e., estimated) and realized (i.e., simulated) population sizes.

Usage

spMosaic(x, method = c("split", "color"), ...)

https://doi.org/10.18637/jss.v079.i10

68 spMosaic

Arguments

x An object of class "spTable" created using function spTable.

method A character string specifying the plot method. Possible values are "split" to
plot the expected population sizes on the left hand side and the realized popula-
tion sizes on the right hand side, and "color"

... if method is "split", further arguments to be passed to cotabplot. If method
is "color", further arguments to be passed to strucplot

Details

If method is "split", the two tables of expected and realized population sizes are combined into
a single table, with an additional conditioning variable indicating expected and realized values. A
conditional plot of this table is then produced using cotabplot.

Author(s)

Andreas Alfons and Bernhard Meindl

References

M. Templ, B. Meindl, A. Kowarik, A. Alfons, O. Dupriez (2017) Simulation of Synthetic Popu-
lations for Survey Data Considering Auxiliary Information. Journal of Statistical Survey, 79 (10),
1–38. doi:10.18637/jss.v079.i10

A. Alfons, M. Templ (2011) Simulation of close-to-reality population data for household surveys
with application to EU-SILC. Statistical Methods & Applications, 20 (3), 383–407. doi:10.1080/
02664763.2013.859237

See Also

spTable, cotabplot, strucplot

Examples

set.seed(1234) # for reproducibility
Not run:
data(eusilcS) # load sample data
samp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize",

strata="db040", weight="db090")
eusilcP <- simStructure(data=samp, method="direct", basicHHvars=c("age","rb090"))
abb <- c("B","LA","Vi","C","St","UA","Sa","T","Vo")
tab <- spTable(eusilcP, select=c("rb090", "db040", "hsize"))

expected and realized population sizes
spMosaic(tab, method = "split",

labeling=labeling_border(abbreviate=c(db040=TRUE)))

realized population sizes colored according to relative
differences with expected population sizes
spMosaic(tab, method = "color",

https://doi.org/10.18637/jss.v079.i10
https://doi.org/10.1080/02664763.2013.859237
https://doi.org/10.1080/02664763.2013.859237

sprague 69

labeling=labeling_border(abbreviate=c(db040=TRUE)))

End(Not run)

sprague Sprague index (multipliers)

Description

Using the Sprague multipliers, the age counts are estimated for each year having 5-years interval
data as input.

Usage

sprague(x)

Arguments

x numeric vector of age counts in five-year intervals

Details

The input is population counts of age classes 0-4, 5-9, 10-14, ... , 77-74, 75-79, 80+.

Value

Population counts for age 0, 1, 2, 3, 4, ..., 78, 79, 80+.

Author(s)

Matthias Templ

References

G. Calot and J.-P. Sardon. Methodology for the calculation of Eurostat’s demographic indicators.
Detailed report by the European Demographic Observatory

See Also

whipple

70 spTable

Examples

example from the world bank
x <- data.frame(age=as.factor(c(

"0-4",
"5-9","10-14","15-19", "20-24",
"25-29","30-34","35-39","40-44","45-49",
"50-54","55-59","60-64","65-69","77-74","75-79","80+"
)),

pop=c(1971990, 2095820,2157190, 2094110,2116580, 2003840, 1785690,
1502990, 1214170, 796934, 627551, 530305, 488014,
364498, 259029,158047, 125941)

)

s <- sprague(x[,2])
s

all.equal(sum(s), sum(x[,2]))

spTable Cross tabulations of expected and realized population sizes.

Description

Compute contingency tables of expected (i.e., estimated) and realized (i.e., simulated) population
sizes. The expected values are obtained with the Horvitz-Thompson estimator.

Usage

spTable(inp, select)

Arguments

inp an object of class simPopObj containing household survey and simulated popu-
lation data.

select character; vector defining the columns in slots ’pop’ and ’sample’ of argument
’input’ that should be used for tabulation.

Details

The contingency tables are computed with tableWt.

Value

A list of class "spTable" with the following components:

expected the contingency table estimated from the survey data.

realized the contingency table computed from the simulated population data.

tableWt 71

Note

Sampling weights are automatically used from the input object ’inp’!

Author(s)

Andreas Alfons and Bernhard Meindl

See Also

spMosaic, tableWt

Examples

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
Not run:
samp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize",

strata="db040", weight="db090")
eusilcP <- simStructure(data=samp, method="direct", basicHHvars=c("age", "rb090"))
res <- spTable(eusilcP, select = c("age", "rb090"))
class(res)
res

End(Not run)

tableWt Weighted cross tabulation

Description

Compute contingency tables taking into account sample weights.

Usage

tableWt(x, weights = NULL, useNA = c("no", "ifany", "always"))

Arguments

x a vector that can be interpreted as a factor, or a matrix or data.frame whose
columns can be interpreted as factors.

weights an optional numeric vector containing sample weights.

useNA a logical indicating whether to include extra NA levels in the table.

Details

For each combination of the variables in x, the weighted number of occurence is computed as
the sum of the corresponding sample weights. If weights are not specified, the function table is
applied.

72 totalsRG

Value

The (weighted) contingency table as an object of class table, an array of integer values.

Author(s)

Andreas Alfons and Stefan Kraft

See Also

table, contingencyWt

Examples

data(eusilcS)
tableWt(eusilcS[, c("hsize", "db040")], weights = eusilcS$rb050)
tableWt(eusilcS[, c("rb090", "pb220a")], weights = eusilcS$rb050,

useNA = "ifany")

totalsRG Population totals Region times Gender for Austria 2006

Description

Population characteristics Region times Gender from Austria.

Using samp samp<- it is possible to extract or rather modify variables of the sample data within
slot data in slot sample of the simPopObj-class-object. Using pop pop<- it is possible to extract
or rather modify variables of the synthetic population within in slot data in slot sample of the
simPopObj-class-object.

Format

totalsRG: A data frame with 18 observations on the following 3 variables.

list("rb090") gender; a factor with levels female male

list("db040") region; a factor with levels Burgenland Carinthia Lower Austria, Salzburg
Styria Tyrol Upper Austria Vienna Vorarlberg

list("Freq") totals; a numeric vector

totalsRGtab: a two-dimensional table holding the same information

totalsRG: A data frame with 18 observations on the following 3 variables.

list("rb090") gender; a factor with levels female male

list("db040") region; a factor with levels Burgenland Carinthia Lower Austria, Salzburg
Styria Tyrol Upper Austria Vienna Vorarlberg

list("Freq") totals; a numeric vector

totalsRGtab: a two-dimensional table holding the same information

utility 73

Details

Population totals Region times Gender for Austria 2006

Population characteristics Region times Gender from Austria.

Source

StatCube - statistical data base, http://www.statistik.at

StatCube - statistical data base, http://www.statistik.at/

Examples

data(totalsRG)
totalsRG
data(totalsRGtab)
totalsRGtab
data(totalsRG)
totalsRG
data(totalsRGtab)
totalsRGtab

utility Utility measures

Description

Various utility measues that basically compares two data sets

Usage

utility(
x,
y,
type = c("all", "compareColumns", "compareRows", "compareRowsHH", "compareNA"),
hhid = NULL

)

utilityModal(x, y, varx, vary = NULL)

utilityIndicator(x, y)

Arguments

x a data.frame, typically the original data set. For utilityIndicator this should
be a vector of length 1.

y a data.frame, typically the corresponding synthetic data set. For utilityIndicator
this should be a vector of length 1.

http://www.statistik.at
http://www.statistik.at/

74 utility

type which measure

compareColumns compares the intersection of variables
compareRows compares the number of rows
compareRowsHH compares the number of housholds
compareNA compares the number of missings

hhid index or name of variable containing the houshold ID

varx name or index of a variable in data.frame x

vary NULL or name or index of a variable in data.frame y corresponding to variable
varx in data.frame x. If NULL, the names of the selected variable should be the
same in both x and y.

Value

the measure(s) of interest

Functions

• utility(): comparisons of two data sets

• utilityModal(): comparison of number of categories

• utilityIndicator(): difference between two values

Author(s)

Matthias Templ, Maxime Bergeaut

Examples

data(eusilcS)
data(eusilcP)
for fast caluclations, took a subsample

eusilcP <- eusilcP[1:15000,]
utility(eusilcS, eusilcP)

data(eusilcS)
data(eusilcP)
utilityModal(eusilcS, eusilcP, "age")
utilityModal(eusilcS, eusilcP, "pl030", "ecoStat")

data(eusilcS)
data(eusilcP)
m1 <- meanWt(eusilcS$age, eusilcS$rb050)
m2 <- mean(eusilcP$age)
utilityIndicator(m1, m2)

weighted_estimators 75

weighted_estimators Weighted mean, variance, covariance matrix and correlation matrix

Description

Compute mean, variance, covariance matrix and correlation matrix, taking into account sample
weights.

• meanWt: a simple wrapper that calls mean(x, na.rm=na.rm) if weights is missing and weighted.mean(x,
w=weights,na.rm=na.rm) otherwise. Implemented methods for this generic are:

– meanWt.default(x, weights, na.rm=TRUE, ...)

– meanWt.dataObj(x, vars, na.rm=TRUE, ...)

• varWt: calls var(x, na.rm=na.rm) if weights is missing. Implemented methods for this
generic are:

– varWt.default(x, weights, na.rm=TRUE, ...)

– varWt.dataObj(x, vars, na.rm=TRUE, ...)

• covWt and covWt: always remove missing values pairwise and call cov and cor, respectively,
if weights is missing. Implemented methods for these generics are:

– covWt.default(x, y, weights, ...)

– covWt.matrix(x, weights, ...)

– covWt.data.frame(x, weights, ...)

– covWt.dataObj(x, vars, ...)

– corWt.default(x, y, weights, ...)

– corWt.matrix(x, weights, ...)

– corWt.data.frame(x, weights, ...)

– corWt.dataObj(x, vars, ...)

The additional parameters are now described:

• y: a numeric vector. If missing, this defaults to x.

• vars: a character vector of variable names that should be used for the calculation.

• na.rm: a logical indicating whether any NA or NaN values should be removed from x before
computation. Note that the default is TRUE.

• weights: an optional numeric vector containing sample weights.

Usage

meanWt(x, ...)

varWt(x, ...)

covWt(x, ...)

corWt(x, ...)

76 weighted_estimators

Arguments

x for meanWt and varWt, a numeric vector or an object of class dataObj. For
covWt and corWt, a numeric vector, matrix, data.frame or dataObj. In case of
a dataObj, weights are automatically used from the S4-object itself.

... for the generic functions covWt and corWt, additional arguments to be passed
to methods. Additional arguments not included in the definition of the methods
are ignored.

Value

For meanWt, the (weighted) mean.

For varWt, the (weighted) variance.

For covWt, the (weighted) covariance matrix or, for the default method, the (weighted) covariance.

For corWt, the (weighted) correlation matrix or, for the default method, the (weighted) correlation
coefficient.

Note

meanWt, varWt, covWt and corWt all make use of slot weights of the input object if the dataObj-
method is used.

Author(s)

Stefan Kraft and Andreas Alfons

See Also

mean, weighted.mean, var, cov, cor

Examples

data(eusilcS)
meanWt(eusilcS$netIncome, weights=eusilcS$rb050)
sqrt(varWt(eusilcS$netIncome, weights=eusilcS$rb050))

dataObj-methods
inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize", strata="db040", weight="db090")
meanWt(inp, vars="netIncome")
sqrt(varWt(inp, vars="netIncome"))
corWt(inp, vars=c("age", "netIncome"))
covWt(inp, vars=c("age", "netIncome"))

whipple 77

whipple Whipple index (original and modified)

Description

The function calculates the original and modified Whipple index to evaluate age heaping.

Usage

whipple(x, method = "standard", weight = NULL)

Arguments

x numeric vector holding the age of persons

method “standard” or “modified” Whipple index.

weight numeric vector holding the weights of each person

Details

The original Whipple’s index is obtained by summing the number of persons in the age range
between 23 and 62, and calculating the ratio of reported ages ending in 0 or 5 to one-fifth of the total
sample. A linear decrease in the number of persons of each age within the age range is assumed.
Therefore, low ages (0-22 years) and high ages (63 years and above) are excluded from analysis
since this assumption is not plausible.

When the digits 0 and 5 are not reported in the data, the original Whipple index varies between 0
and 100, 100 if no preference for 0 or 5 is within the data. When only the digits 0 and 5 are reported
in the data it reaches a to a maximum of 500.

For the modified Whipple index, age heaping is calculated for all ten digits (0-9). For each digit, the
degree of preference or avoidance can be determined for certain ranges of ages, and the modified
Whipple index then is given by the absolute sum of these (indices - 1). The index is scaled between
0 and 1, therefore it is 1 if all age values end with the same digit and 0 it is distributed perfectly
equally.

Value

The original or modified Whipple index.

Author(s)

Matthias Templ, Alexander Kowarik

References

Henry S. Shryock and Jacob S. Siegel, Methods and Materials of Demography (New York: Aca-
demic Press, 1976)

78 whipple

See Also

sprague

Examples

#Equally distributed
age <- sample(1:100, 5000, replace=TRUE)
whipple(age)
whipple(age,method="modified")

Only 5 and 10
age5 <- sample(seq(0,100,by=5), 5000, replace=TRUE)
whipple(age5)
whipple(age5,method="modified")

#Only 10
age10 <- sample(seq(0,100,by=10), 5000, replace=TRUE)
whipple(age10)
whipple(age10,method="modified")

Index

∗ arith
sprague, 69
whipple, 77

∗ array
weighted_estimators, 75

∗ category
contingencyWt, 14
tableWt, 71

∗ classes
dataObj-class, 21
simPopObj-class, 58

∗ datagen
crossValidation, 18
simCategorical, 40
simComponents, 43
simContinuous, 45
simEUSILC, 50
simRelation, 59
simStructure, 62

∗ datasets
calibPop, 7
eusilc13puf, 21
eusilcP, 24
eusilcS, 26
ghanaS, 31
totalsRG, 72

∗ dplot
spBwplotStats, 64
spCdf, 65
spTable, 70

∗ hplot
spMosaic, 67

∗ manip
addKnownMargins, 5
get_set-methods, 30
getBreaks, 27
getCat, 29
manageSimPopObj, 34
sampHH, 37

simInitSpatial, 54
∗ methods

calibSample, 11
contingencyWt, 14
get_set-methods, 30

∗ method
ipu, 32
specifyInput, 66

∗ multivariate
weighted_estimators, 75

∗ package
simPop-package, 3

∗ survey
calibSample, 11
calibVars, 13

∗ univar
quantileWt, 35
weighted_estimators, 75

addKnownMargins, 5, 8
addWeights (addWeights<-), 6
addWeights<-, 6
addWeights<-,dataObj-method

(addWeights<-), 6
addWeights<-,simPopObj-method

(addWeights<-), 6
approx, 65, 66

boxplot.stats, 65

calib, 12
calibPop, 7
calibSample, 6, 11, 14
calibSample,df_or_dataObj_or_simPopObj,dataFrame_or_Table-method

(calibSample), 11
calibVars, 13
checkCol (silcTools2), 38
chooseSILCvars (silcTools2), 38
conditional.dis (simple_dis), 56
contingencyWt, 14, 72

79

80 INDEX

cor, 76
correctHeaps, 15
correctSingleHeap, 17
corWt (weighted_estimators), 75
cotabplot, 68
cov, 76
covWt (weighted_estimators), 75
crossValidation, 18
cut, 29

dataObj, 6, 11, 58, 76
dataObj-class, 21

ecdf, 66
eusilc13puf, 21
eusilcP, 24
eusilcS, 26

factor, 29

get_set-methods, 30
getBreaks, 27, 29, 46, 52
getCat, 28, 29
ghanaS, 31

ipu, 32

loadSILC (silcTools2), 38

manageSimPopObj, 30, 34
mean, 76
meanWt (weighted_estimators), 75
mergeSILC (silcTools2), 38
modifySILC (silcTools2), 38
multinom, 41, 47, 52

nnet, 41, 47, 52
nnet::multinom(), 60
nnet::nnet(), 60

pop, 30, 72
pop (get_set-methods), 30
pop,simPopObj-method (get_set-methods),

30
pop<- (get_set-methods), 30
pop<-,simPopObj-method

(get_set-methods), 30
popData (get_set-methods), 30
popData,simPopObj-method

(get_set-methods), 30

popObj (get_set-methods), 30
popObj,simPopObj-method

(get_set-methods), 30
popObj<- (get_set-methods), 30
popObj<-,simPopObj,dataObj-method

(get_set-methods), 30

quantile, 35, 36
quantileWt, 28, 35, 64, 65

samp, 30, 72
samp (get_set-methods), 30
samp,simPopObj-method

(get_set-methods), 30
samp<- (get_set-methods), 30
samp<-,simPopObj-method

(get_set-methods), 30
sampHH, 37
sample, 63
sampleData (get_set-methods), 30
sampleData,simPopObj-method

(get_set-methods), 30
sampleObj (get_set-methods), 30
sampleObj,simPopObj-method

(get_set-methods), 30
sampleObj<- (get_set-methods), 30
sampleObj<-,simPopObj,dataObj-method

(get_set-methods), 30
show,dataObj-method (dataObj-class), 21
show,simPopObj-method

(simPopObj-class), 58
silcTools2, 38
simCategorical, 20, 40, 44, 49, 53, 57, 63
simCategorical(), 61
simComponents, 20, 43, 43, 49, 53, 63
simComponents(), 61
simContinuous, 20, 43, 44, 45, 53, 63
simContinuous(), 61
simEUSILC, 27, 29, 44, 49, 50, 63
simInitSpatial, 54
simple_dis, 56
simPop (simPop-package), 3
simPop-package, 3
simPopObj, 5–8, 10, 11, 20, 21, 34, 35, 42–44,

46, 49, 53–55, 61, 70
simPopObj-class, 30, 58
simRelation, 20, 43, 59
simStructure, 19–21, 41–44, 48, 49, 53, 58,

62, 66

INDEX 81

simStructure(), 59–61
spBwplot, 65
spBwplotStats, 64
spCdf, 65
spCdfplot, 66
specifyInput, 62, 66
spMosaic, 67, 71
sprague, 69, 78
spTable, 68, 70
strucplot, 68

table, 71, 72
tableObj (get_set-methods), 30
tableObj,simPopObj-method

(get_set-methods), 30
tableWt, 12, 14, 15, 70, 71, 71
totalsRG, 72
totalsRGtab (totalsRG), 72

univariate.dis (simple_dis), 56
utility, 73
utilityIndicator (utility), 73
utilityModal (utility), 73

var, 76
varWt (weighted_estimators), 75

weighted.mean, 76
weighted_estimators, 75
whipple, 69, 77

	simPop-package
	addKnownMargins
	addWeights<-
	calibPop
	calibSample
	calibVars
	contingencyWt
	correctHeaps
	correctSingleHeap
	crossValidation
	dataObj-class
	eusilc13puf
	eusilcP
	eusilcS
	getBreaks
	getCat
	get_set-methods
	ghanaS
	ipu
	manageSimPopObj
	quantileWt
	sampHH
	silcTools2
	simCategorical
	simComponents
	simContinuous
	simEUSILC
	simInitSpatial
	simple_dis
	simPopObj-class
	simRelation
	simStructure
	spBwplotStats
	spCdf
	specifyInput
	spMosaic
	sprague
	spTable
	tableWt
	totalsRG
	utility
	weighted_estimators
	whipple
	Index

