Title: | Interface to 'X12-ARIMA'/'X13-ARIMA-SEATS' and Structure for Batch Processing of Seasonal Adjustment |
---|---|
Description: | The 'X13-ARIMA-SEATS' <https://www.census.gov/data/software/x13as.html> methodology and software is a widely used software and developed by the US Census Bureau. It can be accessed from 'R' with this package and 'X13-ARIMA-SEATS' binaries are provided by the 'R' package 'x13binary'. |
Authors: | Alexander Kowarik <[email protected]>, Angelika Meraner |
Maintainer: | Alexander Kowarik <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.10.3 |
Built: | 2024-11-11 02:58:18 UTC |
Source: | https://github.com/statistikat/x12 |
x12 Single object with the AirPassengers time series
data(AirPassengersX12)
data(AirPassengersX12)
data(AirPassengersX12) summary(AirPassengersX12) summary(AirPassengersX12,oldOutput=10)
data(AirPassengersX12) summary(AirPassengersX12) summary(AirPassengersX12,oldOutput=10)
x12Batch object of four AirPassengers series with paramters and output objects
data(AirPassengersX12Batch)
data(AirPassengersX12Batch)
data(AirPassengersX12Batch) summary(AirPassengersX12Batch)
data(AirPassengersX12Batch) summary(AirPassengersX12Batch)
crossVal
in Package x12 ~~Cross Validation with function crossVal
in package x12.
## S4 method for signature 'ts' crossVal(object, x12Parameter, x12BaseInfo, showCI=FALSE, main="Cross Validation", col_original="black", col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_original=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, ytop=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=TRUE, col_line="grey", lty_line=3, ylab="Value", xlab="Date",ylim=NULL,span=NULL) ## S4 method for signature 'x12Single' crossVal(object, x12BaseInfo=new("x12BaseInfo"), showCI=FALSE, main="Cross Validation", col_original="black", col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_original=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, ytop=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=TRUE, col_line="grey", lty_line=3, ylab="Value", xlab="Date",ylim=NULL,span=NULL)
## S4 method for signature 'ts' crossVal(object, x12Parameter, x12BaseInfo, showCI=FALSE, main="Cross Validation", col_original="black", col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_original=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, ytop=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=TRUE, col_line="grey", lty_line=3, ylab="Value", xlab="Date",ylim=NULL,span=NULL) ## S4 method for signature 'x12Single' crossVal(object, x12BaseInfo=new("x12BaseInfo"), showCI=FALSE, main="Cross Validation", col_original="black", col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_original=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, ytop=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=TRUE, col_line="grey", lty_line=3, ylab="Value", xlab="Date",ylim=NULL,span=NULL)
object |
object of class |
x12Parameter |
object of class |
x12BaseInfo |
object of class |
showCI |
logical specifying if the prediction interval should be plotted. |
main |
plot title. |
col_original |
color of the original time series. |
col_fc |
color of the forecasts. |
col_bc |
color of the backcasts. |
col_ci |
color of the prediction interval. |
col_cishade |
color of the shading of the prediction interval. |
lty_original |
line type of the original time series. |
lty_fc |
line type of the forecasts. |
lty_bc |
line type of the backcasts. |
lty_ci |
line type of the prediction interval. |
lwd_original |
line width of the original time series. |
lwd_fc |
line width of the forecasts. |
lwd_bc |
line width of the backcasts. |
lwd_ci |
line width of the prediction interval. |
ytop |
multiplication factor for |
points_bc |
logical specifying if backcasts should additionally be indicated with points. |
points_fc |
logical specifying if forecasts should additionally be indicated with points. |
points_original |
logical specifying if the original time series should additionally be indicated with points. |
showLine |
logical indicating if a boundary line should be drawn before/after fore-/backcasts. |
col_line |
color of |
lty_line |
line type of |
ylab |
label of y-axis. |
xlab |
label of x-axis. |
ylim |
range of the y-axis |
span |
vector of length 4, limiting the data used for the plot. |
An S4 object of class crossValidation-class
.
signature(object = "ts")
signature(object = "x12Single")
Alexander Kowarik, Angelika Meraner
x12
,
plot
,
plotSpec
,
plotSeasFac
,
plotRsdAcf
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5), backcast_years=1/2,forecast_years=1)) cv<-crossVal(s,showLine=TRUE) cv ## End(Not run)
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5), backcast_years=1/2,forecast_years=1)) cv<-crossVal(s,showLine=TRUE) cv ## End(Not run)
"crossValidation"
Standardized object for saving the output of crossVal
in R.
Objects can be created by calls of the form new("crossValidation", ...)
.
backcast
:Object of class "dfOrNULL"
~~
forecast
:Object of class "dfOrNULL"
~~
Alexander Kowarik, Angelika Meraner
showClass("crossValidation")
showClass("crossValidation")
"diagnostics"
The x12 binaries produce a file with the suffix .udg. This class is a list of a selection of its content.
Objects can be created by calls of the form new("diagnostics", ...)
.
It is used internally by the methods for x12Batch and x12Single objects.
.Data
:Object of class "list"
~~
Class "list"
, from data part.
Alexander Kowarik
showClass("diagnostics")
showClass("diagnostics")
"fbcast"
Objects to save estimate, lowerci and upperci of fore- and/or backcasts in one standardized list. Used by the functions in this package.
Objects can be created by calls of the form new("fbcast", ...)
.
estimate
:Object of class "ts"
~~
lowerci
:Object of class "ts"
~~
upperci
:Object of class "ts"
~~
Alexander Kowarik
showClass("fbcast")
showClass("fbcast")
getP
and setP
for retrieving and setting parametersgetP
and setP
for retrieving and setting parameters from a
x12Single-class
, x12Batch-class
or x12Parameter-class
object.
## S4 method for signature 'x12Single' getP(object, whichP) ## S4 method for signature 'x12Batch' getP(object, whichP,index=NULL) ## S4 method for signature 'x12Parameter' getP(object, whichP) ## S4 method for signature 'x12Single' setP(object, listP) ## S4 method for signature 'x12Batch' setP(object, listP,index=NULL) ## S4 method for signature 'x12Parameter' setP(object, listP)
## S4 method for signature 'x12Single' getP(object, whichP) ## S4 method for signature 'x12Batch' getP(object, whichP,index=NULL) ## S4 method for signature 'x12Parameter' getP(object, whichP) ## S4 method for signature 'x12Single' setP(object, listP) ## S4 method for signature 'x12Batch' setP(object, listP,index=NULL) ## S4 method for signature 'x12Parameter' setP(object, listP)
object |
object of class |
whichP |
character vector with the names of the parameters to extract |
listP |
named list of parameters to change |
index |
index of the series in |
signature(object = "x12Batch")
signature(object = "x12Parameter")
signature(object = "x12Single")
## Not run: #Create new batch object with 4 time series xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) # change the automdl to FALSE in all 4 elements xb <- setP(xb,list(automdl=FALSE)) #change the arima.model and arima.smodel settings for the first ts object xb <- setP(xb,list(arima.model=c(1,1,0),arima.smodel=c(1,1,0)),1) #change the arima.model and arima.smodel settings for the second ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2) #change the arima.model and arima.smodel settingsfor the third ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(1,1,1)),3) #change the arima.model and arima.smodel settings for the fourth ts object xb <- setP(xb,list(arima.model=c(1,1,1),arima.smodel=c(1,1,1)),4) #run x12 on all series xb <- x12(xb) summary(xb) #Set automdl=TRUE for the first ts xb <- setP(xb,list(automdl=TRUE),1) getP(xb,"automdl") #rerun x12 on all series (the binaries will only run on the first one) xb <- x12(xb) #summary with oldOutput summary(xb,oldOutput=10) #Change the parameter and output of the first series back to the first run xb <- prev(xb,index=1,n=1) #summary with oldOutput (--- No valid previous runs. ---) summary(xb,oldOutput=10) ## End(Not run)
## Not run: #Create new batch object with 4 time series xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) # change the automdl to FALSE in all 4 elements xb <- setP(xb,list(automdl=FALSE)) #change the arima.model and arima.smodel settings for the first ts object xb <- setP(xb,list(arima.model=c(1,1,0),arima.smodel=c(1,1,0)),1) #change the arima.model and arima.smodel settings for the second ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2) #change the arima.model and arima.smodel settingsfor the third ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(1,1,1)),3) #change the arima.model and arima.smodel settings for the fourth ts object xb <- setP(xb,list(arima.model=c(1,1,1),arima.smodel=c(1,1,1)),4) #run x12 on all series xb <- x12(xb) summary(xb) #Set automdl=TRUE for the first ts xb <- setP(xb,list(automdl=TRUE),1) getP(xb,"automdl") #rerun x12 on all series (the binaries will only run on the first one) xb <- x12(xb) #summary with oldOutput summary(xb,oldOutput=10) #Change the parameter and output of the first series back to the first run xb <- prev(xb,index=1,n=1) #summary with oldOutput (--- No valid previous runs. ---) summary(xb,oldOutput=10) ## End(Not run)
loadP
and saveP
Functions loadP
and saveP
load and save parameter settings.
## S4 method for signature 'x12Single' loadP(object, file) ## S4 method for signature 'x12Batch' loadP(object, file) ## S4 method for signature 'x12Parameter' loadP(object, file) ## S4 method for signature 'x12Single' saveP(object, file) ## S4 method for signature 'x12Batch' saveP(object, file) ## S4 method for signature 'x12Parameter' saveP(object, file)
## S4 method for signature 'x12Single' loadP(object, file) ## S4 method for signature 'x12Batch' loadP(object, file) ## S4 method for signature 'x12Parameter' loadP(object, file) ## S4 method for signature 'x12Single' saveP(object, file) ## S4 method for signature 'x12Batch' saveP(object, file) ## S4 method for signature 'x12Parameter' saveP(object, file)
object |
object of class |
file |
filepath |
signature(object = "x12Batch")
signature(object = "x12Parameter")
signature(object = "x12Single")
## Not run: #Create new batch object with 4 time series and change some parameters xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) xb <- setP(xb,list(automdl=FALSE)) xb <- setP(xb,list(arima.model=c(1,1,0),arima.model=c(1,1,0)),1) xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2) xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(1,1,1)),3) xb <- setP(xb,list(arima.model=c(1,1,1),arima.smodel=c(1,1,1)),4) #save all parameters saveP(xb,file="xyz.RData") xb1 <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) #load all parameters and save it to the corresponding series inside a x12Batch-object xb1 <- loadP(xb1,file="xyz.RData") xs <- new("x12Single",ts=AirPassengers) xs <- setP(xs,list(arima.model=c(2,1,1),arima.smodel=c(2,1,1))) #Save the parameters saveP(xs,file="xyz1.RData") #Load a saved parameter set to a x12Single object xs <- new("x12Single",ts=AirPassengers) xs <- loadP(xs,file="xyz1.RData") #Replace all parameters in a x12Batch object with one parameter set xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) xb <- loadP(xb,file="xyz1.RData") ## End(Not run)
## Not run: #Create new batch object with 4 time series and change some parameters xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) xb <- setP(xb,list(automdl=FALSE)) xb <- setP(xb,list(arima.model=c(1,1,0),arima.model=c(1,1,0)),1) xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2) xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(1,1,1)),3) xb <- setP(xb,list(arima.model=c(1,1,1),arima.smodel=c(1,1,1)),4) #save all parameters saveP(xb,file="xyz.RData") xb1 <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) #load all parameters and save it to the corresponding series inside a x12Batch-object xb1 <- loadP(xb1,file="xyz.RData") xs <- new("x12Single",ts=AirPassengers) xs <- setP(xs,list(arima.model=c(2,1,1),arima.smodel=c(2,1,1))) #Save the parameters saveP(xs,file="xyz1.RData") #Load a saved parameter set to a x12Single object xs <- new("x12Single",ts=AirPassengers) xs <- loadP(xs,file="xyz1.RData") #Replace all parameters in a x12Batch object with one parameter set xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) xb <- loadP(xb,file="xyz1.RData") ## End(Not run)
plot
in Package x12 ~~Plot function for x12
output in package x12.
## S4 method for signature 'x12Single' plot(x, original=TRUE, sa=FALSE, trend=FALSE, log_transform=FALSE, ylab="Value", xlab="Date", main="TS", col_original="black", col_sa="blue", col_trend="green", lwd_original=1, lwd_sa=1, lwd_trend=1, lty_sa=1, lty_trend=1, ytop=1, showAllout=FALSE, showAlloutLines=FALSE, showOut=NULL, annComp=TRUE, annCompTrend=TRUE, col_ao="red", col_ls="red", col_tc="red", col_annComp="grey", lwd_out=1, cex_out=1.5, pch_ao=4, pch_ls=2, pch_tc=23, plot_legend=TRUE, legend_horiz=TRUE, legend_bty="o", forecast=FALSE, backcast=FALSE, showCI=TRUE, col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=FALSE, col_line="grey", lty_line=3, ylim=NULL, span=NULL, ...) ## S4 method for signature 'x12Batch' plot(x, what="ask",original=TRUE, sa=FALSE, trend=FALSE, log_transform=FALSE, ylab="Value", xlab="Date", main="TS", col_original="black", col_sa="blue", col_trend="green", lwd_original=1, lwd_sa=1, lwd_trend=1, lty_sa=1, lty_trend=1, ytop=1, showAllout=FALSE, showAlloutLines=FALSE, showOut=NULL, annComp=TRUE, annCompTrend=TRUE, col_ao="red", col_ls="red", col_tc="red", col_annComp="grey", lwd_out=1, cex_out=1.5, pch_ao=4, pch_ls=2, pch_tc=23, plot_legend=TRUE, legend_horiz=TRUE, legend_bty="o", forecast=FALSE, backcast=FALSE, showCI=TRUE, col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=FALSE, col_line="grey", lty_line=3, ylim=NULL, span=NULL, ...) ## S4 method for signature 'x12Output' plot(x, original=TRUE, sa=FALSE, trend=FALSE, log_transform=FALSE, ylab="Value", xlab="Date", main="TS", col_original="black", col_sa="blue", col_trend="green", lwd_original=1, lwd_sa=1, lwd_trend=1, lty_sa=1, lty_trend=1, ytop=1, showAllout=FALSE, showAlloutLines=FALSE, showOut=NULL, annComp=TRUE, annCompTrend=TRUE, col_ao="red", col_ls="red", col_tc="red", col_annComp="grey", lwd_out=1, cex_out=1.5, pch_ao=4, pch_ls=2, pch_tc=23, plot_legend=TRUE, legend_horiz=TRUE, legend_bty="o", forecast=FALSE, backcast=FALSE, showCI=TRUE, col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=FALSE, col_line="grey", lty_line=3, ylim=NULL, span=NULL, ...)
## S4 method for signature 'x12Single' plot(x, original=TRUE, sa=FALSE, trend=FALSE, log_transform=FALSE, ylab="Value", xlab="Date", main="TS", col_original="black", col_sa="blue", col_trend="green", lwd_original=1, lwd_sa=1, lwd_trend=1, lty_sa=1, lty_trend=1, ytop=1, showAllout=FALSE, showAlloutLines=FALSE, showOut=NULL, annComp=TRUE, annCompTrend=TRUE, col_ao="red", col_ls="red", col_tc="red", col_annComp="grey", lwd_out=1, cex_out=1.5, pch_ao=4, pch_ls=2, pch_tc=23, plot_legend=TRUE, legend_horiz=TRUE, legend_bty="o", forecast=FALSE, backcast=FALSE, showCI=TRUE, col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=FALSE, col_line="grey", lty_line=3, ylim=NULL, span=NULL, ...) ## S4 method for signature 'x12Batch' plot(x, what="ask",original=TRUE, sa=FALSE, trend=FALSE, log_transform=FALSE, ylab="Value", xlab="Date", main="TS", col_original="black", col_sa="blue", col_trend="green", lwd_original=1, lwd_sa=1, lwd_trend=1, lty_sa=1, lty_trend=1, ytop=1, showAllout=FALSE, showAlloutLines=FALSE, showOut=NULL, annComp=TRUE, annCompTrend=TRUE, col_ao="red", col_ls="red", col_tc="red", col_annComp="grey", lwd_out=1, cex_out=1.5, pch_ao=4, pch_ls=2, pch_tc=23, plot_legend=TRUE, legend_horiz=TRUE, legend_bty="o", forecast=FALSE, backcast=FALSE, showCI=TRUE, col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=FALSE, col_line="grey", lty_line=3, ylim=NULL, span=NULL, ...) ## S4 method for signature 'x12Output' plot(x, original=TRUE, sa=FALSE, trend=FALSE, log_transform=FALSE, ylab="Value", xlab="Date", main="TS", col_original="black", col_sa="blue", col_trend="green", lwd_original=1, lwd_sa=1, lwd_trend=1, lty_sa=1, lty_trend=1, ytop=1, showAllout=FALSE, showAlloutLines=FALSE, showOut=NULL, annComp=TRUE, annCompTrend=TRUE, col_ao="red", col_ls="red", col_tc="red", col_annComp="grey", lwd_out=1, cex_out=1.5, pch_ao=4, pch_ls=2, pch_tc=23, plot_legend=TRUE, legend_horiz=TRUE, legend_bty="o", forecast=FALSE, backcast=FALSE, showCI=TRUE, col_fc="#2020ff", col_bc="#2020ff", col_ci="#d1d1ff", col_cishade="#d1d1ff", lty_original=1, lty_fc=2, lty_bc=2, lty_ci=1, lwd_fc=1, lwd_bc=1, lwd_ci=1, points_bc=FALSE, points_fc=FALSE, points_original=FALSE, showLine=FALSE, col_line="grey", lty_line=3, ylim=NULL, span=NULL, ...)
x |
object of class |
original |
logical defining whether the original time series should be plotted. |
sa |
logical defining whether the seasonally adjusted time series should be plotted. |
trend |
logical defining whether the trend should be plotted. |
log_transform |
logical defining whether the log transform should be plotted. |
showAllout |
logical defining whether all outliers should be plotted. |
showOut |
character in the format |
annComp |
logical defining whether an annual comparison should be performed for the outlier defined in |
forecast |
logical defining whether the forecasts should be plotted. |
backcast |
logical defining whether the backcasts should be plotted. |
showCI |
logical defining whether the prediction intervals should be plotted. |
ylab |
label of y-axis. |
xlab |
label of x-axis. |
main |
plot title. |
col_original |
color of the original time series. |
col_sa |
color of the seasonally adjusted time series. |
col_trend |
color of the trend. |
lwd_original |
line width of the original time series. |
lwd_sa |
line width of the seasonally adjusted time series. |
lwd_trend |
line width of the trend. |
lty_original |
line type of the original time series. |
lty_sa |
line type of the seasonally adjusted time series. |
lty_trend |
line type of the trend. |
ytop |
multiplication factor for |
showAlloutLines |
logical specifying if vertical lines should be plotted with the outliers. |
annCompTrend |
logical specifying if the trend of the annual comparison should be plotted. |
col_ao |
color of additive outliers. |
col_ls |
color of level shifts. |
col_tc |
color of transitory changes. |
col_annComp |
color of annual comparison. |
lwd_out |
line width of outliers. |
cex_out |
magnification factor for size of symbols used for plotting outliers. |
pch_ao |
symbols used for additive outliers. |
pch_ls |
symbols used for level shifts. |
pch_tc |
symbols used for transitory changes. |
plot_legend |
logical specifying if a legend should be plotted. |
legend_horiz |
Orientation of the legend |
legend_bty |
the type of box to be drawn around the legend. The allowed values are "o" (the default) and "n". |
col_fc |
color of forecasts. |
col_bc |
color of backcasts. |
col_ci |
color of prediction interval. |
col_cishade |
color of prediction interval shading. |
lty_fc |
line type of forecasts. |
lty_bc |
line type of backcasts. |
lty_ci |
line type of prediction interval. |
lwd_fc |
line width of forecasts. |
lwd_bc |
line width of backcasts. |
lwd_ci |
line width of prediction interval. |
points_bc |
logical specifying if backcasts should additionally be indicated with points. |
points_fc |
logical specifying if forecasts should additionally be indicated with points. |
points_original |
logical specifying if the original time series should additionally be indicated with points. |
showLine |
logical indicating if a boundary line should be drawn before/after fore-/backcasts. |
col_line |
color of |
lty_line |
line type of |
ylim |
range of the y-axis. |
span |
vector of length 4, limiting the data used for the plot. |
what |
How multiple plots should be treated. "ask" is the only option at the moment. |
... |
ignored. |
signature(x = "x12Output")
signature(x = "x12Single")
Alexander Kowarik, Angelika Meraner
plotSpec
,
plotSeasFac
,
plotRsdAcf
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) #w/o outliers plot(s@x12Output,sa=TRUE,trend=TRUE,original=FALSE) plot(s) #with (all) outliers plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,log_transform=TRUE,lwd_out=1,pch_ao=4) plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,original=FALSE,showAlloutLines=TRUE, col_tc="purple")#,log_transform=TRUE)#,lwd_out=3) plot(s,showAllout=TRUE,span=c(1951,1,1953,12),points_original=TRUE,cex_out=2) #with showOut plot(s,showOut="AO1960.Jun",sa=FALSE,trend=FALSE,annComp=TRUE,log_transform=TRUE) plot(s,showOut="AO1958.Mar",sa=TRUE,trend=TRUE,annComp=TRUE,annCompTrend=FALSE) plot(s,showOut="AO1950.Jun",annComp=FALSE,cex_out=3,pch_ao=19,col_ao="orange") plot(s,showOut="TC1954.Mar",span=c(1954,1,1955,12)) plot(s,showOut="TC1954.Feb",col_tc="green3") #w/o legend plot(s,showAllout=TRUE,plot_legend=FALSE) plot(s,plot_legend=FALSE) plot(s,showOut="AO1950.1",plot_legend=FALSE,lwd_out=2,col_ao="purple") plot(s,showOut="TC1954.Feb",col_tc="orange",col_ao="magenta",plot_legend=FALSE) plot(s,showOut="AO1950.1",col_tc="orange",col_ao="magenta",plot_legend=FALSE) #Forecasts & Backcasts plot(s,forecast=TRUE) plot(s,backcast=TRUE,showLine=TRUE) plot(s,backcast=TRUE,forecast=TRUE,showCI=FALSE) plot(s,forecast=TRUE,points_fc=TRUE,col_fc="purple",lty_fc=2,lty_original=3, lwd_fc=0.9,lwd_ci=2) plot(s,sa=TRUE,plot_legend=FALSE) #Seasonal Factors and SI Ratios plotSeasFac(s) #Spectra plotSpec(s) plotSpec(s,highlight=FALSE) #Autocorrelations of the Residuals plotRsdAcf(s) plotRsdAcf(s,col_acf="black",lwd_acf=1) ## End(Not run)
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) #w/o outliers plot(s@x12Output,sa=TRUE,trend=TRUE,original=FALSE) plot(s) #with (all) outliers plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,log_transform=TRUE,lwd_out=1,pch_ao=4) plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,original=FALSE,showAlloutLines=TRUE, col_tc="purple")#,log_transform=TRUE)#,lwd_out=3) plot(s,showAllout=TRUE,span=c(1951,1,1953,12),points_original=TRUE,cex_out=2) #with showOut plot(s,showOut="AO1960.Jun",sa=FALSE,trend=FALSE,annComp=TRUE,log_transform=TRUE) plot(s,showOut="AO1958.Mar",sa=TRUE,trend=TRUE,annComp=TRUE,annCompTrend=FALSE) plot(s,showOut="AO1950.Jun",annComp=FALSE,cex_out=3,pch_ao=19,col_ao="orange") plot(s,showOut="TC1954.Mar",span=c(1954,1,1955,12)) plot(s,showOut="TC1954.Feb",col_tc="green3") #w/o legend plot(s,showAllout=TRUE,plot_legend=FALSE) plot(s,plot_legend=FALSE) plot(s,showOut="AO1950.1",plot_legend=FALSE,lwd_out=2,col_ao="purple") plot(s,showOut="TC1954.Feb",col_tc="orange",col_ao="magenta",plot_legend=FALSE) plot(s,showOut="AO1950.1",col_tc="orange",col_ao="magenta",plot_legend=FALSE) #Forecasts & Backcasts plot(s,forecast=TRUE) plot(s,backcast=TRUE,showLine=TRUE) plot(s,backcast=TRUE,forecast=TRUE,showCI=FALSE) plot(s,forecast=TRUE,points_fc=TRUE,col_fc="purple",lty_fc=2,lty_original=3, lwd_fc=0.9,lwd_ci=2) plot(s,sa=TRUE,plot_legend=FALSE) #Seasonal Factors and SI Ratios plotSeasFac(s) #Spectra plotSpec(s) plotSpec(s,highlight=FALSE) #Autocorrelations of the Residuals plotRsdAcf(s) plotRsdAcf(s,col_acf="black",lwd_acf=1) ## End(Not run)
Plot method for objects of class "x12work"
.
## S3 method for class 'x12work' plot(x,plots=c(1:9), ...)
## S3 method for class 'x12work' plot(x,plots=c(1:9), ...)
x |
an object of class |
plots |
a vector containing numbers between 1 and 9. |
... |
further arguments (currently ignored). |
Plots:
1: Original
2: Original Trend Adjusted
3: Log Original
4: Seasonal Factors
5: Seasonal Factors with SI Ratios
6: Spectrum Adjusted Original
7: Spectrum Seasonal Adjusted
8: Spectrum Irregular
9: Spectrum Residulas
Alexander Kowarik
data(AirPassengersX12) #plot(AirPassengersX12)
data(AirPassengersX12) #plot(AirPassengersX12)
plotRsdAcf
in Package x12 ~~Plot of the (partial) autocorrelations of the (squared) residuals with function plotRsdAcf
in package x12.
## S4 method for signature 'x12Output' plotRsdAcf(x, which="acf", xlab="Lag", ylab="ACF", main="default", col_acf="darkgrey", lwd_acf=4, col_ci="blue", lt_ci=2, ylim="default", ...) ## S4 method for signature 'x12Single' plotRsdAcf(x, which="acf", xlab="Lag", ylab="ACF", main="default", col_acf="darkgrey", lwd_acf=4, col_ci="blue", lt_ci=2, ylim="default", ...)
## S4 method for signature 'x12Output' plotRsdAcf(x, which="acf", xlab="Lag", ylab="ACF", main="default", col_acf="darkgrey", lwd_acf=4, col_ci="blue", lt_ci=2, ylim="default", ...) ## S4 method for signature 'x12Single' plotRsdAcf(x, which="acf", xlab="Lag", ylab="ACF", main="default", col_acf="darkgrey", lwd_acf=4, col_ci="blue", lt_ci=2, ylim="default", ...)
x |
object of class |
which |
character specifying the type of autocorrelation of
the residuals that should be plotted, i.e. the autocorrelations or partial autocorrelations
of the residuals or the autocorrelations of the squared residuals ( |
xlab |
label of the x-axis. |
ylab |
label of the y-axis. |
main |
plot title. |
col_acf |
color of the autocorrelations. |
lwd_acf |
line width of the autocorrelations. |
col_ci |
color of the +- 2 standard error limits. |
lt_ci |
line type of the +- 2 standard error limits. |
ylim |
range of the y-axis. |
... |
ignored. |
signature(x = "x12Output")
signature(x = "x12Single")
Alexander Kowarik, Angelika Meraner
x12
,
plot
,
plotSpec
,
plotSeasFac
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) #w/o outliers plot(s@x12Output,sa=TRUE,trend=TRUE,original=FALSE) plot(s) #with (all) outliers plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,log_transform=TRUE,lwd_out=1,pch_ao=4) plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,original=FALSE,showAlloutLines=TRUE, col_tc="purple")#,log_transform=TRUE)#,lwd_out=3) #with showOut plot(s,showOut="AO1960.Jun",sa=FALSE,trend=FALSE,annComp=TRUE,log_transform=TRUE) plot(s,showOut="AO1958.Mar",sa=TRUE,trend=TRUE,annComp=TRUE,annCompTrend=FALSE) plot(s,showOut="AO1950.Jun",annComp=FALSE,cex_out=3,pch_ao=19,col_ao="orange") plot(s,showOut="TC1954.Feb") plot(s,showOut="TC1954.Feb",col_tc="green3") #w/o legend plot(s,showAllout=TRUE,plot_legend=FALSE) plot(s,plot_legend=FALSE) plot(s,showOut="AO1950.1",plot_legend=FALSE,lwd_out=2,col_ao="purple") plot(s,showOut="TC1954.Feb",col_tc="orange",col_ao="magenta",plot_legend=FALSE) plot(s,showOut="AO1950.1",col_tc="orange",col_ao="magenta",plot_legend=FALSE) #Forecasts & Backcasts plot(s,forecast=TRUE) plot(s,backcast=TRUE,showLine=TRUE) plot(s,backcast=TRUE,forecast=TRUE,showCI=FALSE) plot(s,forecast=TRUE,points_fc=TRUE,col_fc="purple",lty_fc=2,lty_original=3,lwd_fc=0.9, lwd_ci=2) plot(s,sa=TRUE,plot_legend=FALSE) #Seasonal Factors and SI Ratios plotSeasFac(s) #Spectra plotSpec(s) plotSpec(s,highlight=FALSE) #Autocorrelations of the Residuals plotRsdAcf(s) plotRsdAcf(s,col_acf="black",lwd_acf=1) ## End(Not run)
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) #w/o outliers plot(s@x12Output,sa=TRUE,trend=TRUE,original=FALSE) plot(s) #with (all) outliers plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,log_transform=TRUE,lwd_out=1,pch_ao=4) plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,original=FALSE,showAlloutLines=TRUE, col_tc="purple")#,log_transform=TRUE)#,lwd_out=3) #with showOut plot(s,showOut="AO1960.Jun",sa=FALSE,trend=FALSE,annComp=TRUE,log_transform=TRUE) plot(s,showOut="AO1958.Mar",sa=TRUE,trend=TRUE,annComp=TRUE,annCompTrend=FALSE) plot(s,showOut="AO1950.Jun",annComp=FALSE,cex_out=3,pch_ao=19,col_ao="orange") plot(s,showOut="TC1954.Feb") plot(s,showOut="TC1954.Feb",col_tc="green3") #w/o legend plot(s,showAllout=TRUE,plot_legend=FALSE) plot(s,plot_legend=FALSE) plot(s,showOut="AO1950.1",plot_legend=FALSE,lwd_out=2,col_ao="purple") plot(s,showOut="TC1954.Feb",col_tc="orange",col_ao="magenta",plot_legend=FALSE) plot(s,showOut="AO1950.1",col_tc="orange",col_ao="magenta",plot_legend=FALSE) #Forecasts & Backcasts plot(s,forecast=TRUE) plot(s,backcast=TRUE,showLine=TRUE) plot(s,backcast=TRUE,forecast=TRUE,showCI=FALSE) plot(s,forecast=TRUE,points_fc=TRUE,col_fc="purple",lty_fc=2,lty_original=3,lwd_fc=0.9, lwd_ci=2) plot(s,sa=TRUE,plot_legend=FALSE) #Seasonal Factors and SI Ratios plotSeasFac(s) #Spectra plotSpec(s) plotSpec(s,highlight=FALSE) #Autocorrelations of the Residuals plotRsdAcf(s) plotRsdAcf(s,col_acf="black",lwd_acf=1) ## End(Not run)
plotSeasFac
in Package x12 ~~Seasonal factor plots with function plotSeasFac
in package x12.
## S4 method for signature 'x12Output' plotSeasFac(x,SI_Ratios=TRUE, ylab="Value", xlab="", lwd_seasonal=1, col_seasonal="black", lwd_mean=1, col_mean="blue", col_siratio="darkgreen",col_replaced="red", cex_siratio=.9, cex_replaced=.9, SI_Ratios_replaced=TRUE, plot_legend=TRUE,legend_horiz=FALSE,legend_bty="o", ...) ## S4 method for signature 'x12Single' plotSeasFac(x,SI_Ratios=TRUE, ylab="Value", xlab="",lwd_seasonal=1, col_seasonal="black", lwd_mean=1, col_mean="blue", col_siratio="darkgreen", col_replaced="red", cex_siratio=.9, cex_replaced=.9, SI_Ratios_replaced=TRUE, plot_legend=TRUE,legend_horiz=FALSE,legend_bty="o", ...)
## S4 method for signature 'x12Output' plotSeasFac(x,SI_Ratios=TRUE, ylab="Value", xlab="", lwd_seasonal=1, col_seasonal="black", lwd_mean=1, col_mean="blue", col_siratio="darkgreen",col_replaced="red", cex_siratio=.9, cex_replaced=.9, SI_Ratios_replaced=TRUE, plot_legend=TRUE,legend_horiz=FALSE,legend_bty="o", ...) ## S4 method for signature 'x12Single' plotSeasFac(x,SI_Ratios=TRUE, ylab="Value", xlab="",lwd_seasonal=1, col_seasonal="black", lwd_mean=1, col_mean="blue", col_siratio="darkgreen", col_replaced="red", cex_siratio=.9, cex_replaced=.9, SI_Ratios_replaced=TRUE, plot_legend=TRUE,legend_horiz=FALSE,legend_bty="o", ...)
x |
object of class |
SI_Ratios |
logical specifying if the SI ratios should be plotted. |
ylab |
label of the y-axis. |
xlab |
label of the x-axis. |
lwd_seasonal |
line width of the seasonal factors. |
col_seasonal |
color of the seasonal factors. |
lwd_mean |
line width of the mean. |
col_mean |
color of the mean. |
col_siratio |
color of the SI ratios. |
col_replaced |
color of the replaced SI ratios. |
cex_siratio |
magnification factor for the size of the symbols used for plotting the SI ratios. |
cex_replaced |
magnification factor for the size of the symbols used for plotting the replaced SI ratios. |
SI_Ratios_replaced |
logical specifying if the replaced SI ratios should be plotted. |
plot_legend |
logical specifying if a legend should be plotted. |
legend_horiz |
Orientation of the legend |
legend_bty |
the type of box to be drawn around the legend. The allowed values are "o" (the default) and "n". |
... |
ignored. |
signature(x = "x12Output")
signature(x = "x12Single")
Alexander Kowarik, Angelika Meraner
x12
,
plot
,
plotSpec
,
plotRsdAcf
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) #w/o outliers plot(s@x12Output,sa=TRUE,trend=TRUE,original=FALSE) plot(s) #with (all) outliers plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,log_transform=TRUE,lwd_out=1,pch_ao=4) plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,original=FALSE,showAlloutLines=TRUE, col_tc="purple")#,log_transform=TRUE)#,lwd_out=3) #with showOut plot(s,showOut="AO1960.Jun",sa=FALSE,trend=FALSE,annComp=TRUE,log_transform=TRUE) plot(s,showOut="AO1958.Mar",sa=TRUE,trend=TRUE,annComp=TRUE,annCompTrend=FALSE) plot(s,showOut="AO1950.Jun",annComp=FALSE,cex_out=3,pch_ao=19,col_ao="orange") plot(s,showOut="TC1954.Feb") plot(s,showOut="TC1954.Feb",col_tc="green3") #w/o legend plot(s,showAllout=TRUE,plot_legend=FALSE) plot(s,plot_legend=FALSE) plot(s,showOut="AO1950.1",plot_legend=FALSE,lwd_out=2,col_ao="purple") plot(s,showOut="TC1954.Feb",col_tc="orange",col_ao="magenta",plot_legend=FALSE) plot(s,showOut="AO1950.1",col_tc="orange",col_ao="magenta",plot_legend=FALSE) #Forecasts & Backcasts plot(s,forecast=TRUE) plot(s,backcast=TRUE,showLine=TRUE) plot(s,backcast=TRUE,forecast=TRUE,showCI=FALSE) plot(s,forecast=TRUE,points_fc=TRUE,col_fc="purple",lty_fc=2,lty_original=3, lwd_fc=0.9,lwd_ci=2) plot(s,sa=TRUE,plot_legend=FALSE) #Seasonal Factors and SI Ratios plotSeasFac(s) #Spectra plotSpec(s) plotSpec(s,highlight=FALSE) #Autocorrelations of the Residuals plotRsdAcf(s) plotRsdAcf(s,col_acf="black",lwd_acf=1) ## End(Not run)
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) #w/o outliers plot(s@x12Output,sa=TRUE,trend=TRUE,original=FALSE) plot(s) #with (all) outliers plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,log_transform=TRUE,lwd_out=1,pch_ao=4) plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,original=FALSE,showAlloutLines=TRUE, col_tc="purple")#,log_transform=TRUE)#,lwd_out=3) #with showOut plot(s,showOut="AO1960.Jun",sa=FALSE,trend=FALSE,annComp=TRUE,log_transform=TRUE) plot(s,showOut="AO1958.Mar",sa=TRUE,trend=TRUE,annComp=TRUE,annCompTrend=FALSE) plot(s,showOut="AO1950.Jun",annComp=FALSE,cex_out=3,pch_ao=19,col_ao="orange") plot(s,showOut="TC1954.Feb") plot(s,showOut="TC1954.Feb",col_tc="green3") #w/o legend plot(s,showAllout=TRUE,plot_legend=FALSE) plot(s,plot_legend=FALSE) plot(s,showOut="AO1950.1",plot_legend=FALSE,lwd_out=2,col_ao="purple") plot(s,showOut="TC1954.Feb",col_tc="orange",col_ao="magenta",plot_legend=FALSE) plot(s,showOut="AO1950.1",col_tc="orange",col_ao="magenta",plot_legend=FALSE) #Forecasts & Backcasts plot(s,forecast=TRUE) plot(s,backcast=TRUE,showLine=TRUE) plot(s,backcast=TRUE,forecast=TRUE,showCI=FALSE) plot(s,forecast=TRUE,points_fc=TRUE,col_fc="purple",lty_fc=2,lty_original=3, lwd_fc=0.9,lwd_ci=2) plot(s,sa=TRUE,plot_legend=FALSE) #Seasonal Factors and SI Ratios plotSeasFac(s) #Spectra plotSpec(s) plotSpec(s,highlight=FALSE) #Autocorrelations of the Residuals plotRsdAcf(s) plotRsdAcf(s,col_acf="black",lwd_acf=1) ## End(Not run)
plotSpec
in Package x12 ~~Spectral plots with function plotSpec
in package x12.
x |
an object of class |
which |
a string defining the executable of the editor to use ( |
frequency |
frequency of the time series (has to be specified for objects of class |
xlab |
label of the x-axis. |
ylab |
label of the y-axis. |
main |
plot title. |
col_bar |
color of bars. |
col_seasonal |
color of seasonal frequencies. |
col_td |
color of trading day frequencies. |
lwd_bar |
line width of bars. |
lwd_seasonal |
line width of seasonal frequencies. |
lwd_td |
line width of trading day frequencies. |
plot_legend |
logical specifying if a legend should be plotted. |
signature(x = "x12Output",which="sa",
xlab="Frequency",ylab="Decibels",
main="Spectrum",
col_bar="darkgrey",col_seasonal="red",col_td="blue",
lwd_bar=4,lwd_seasonal=4,lwd_td=4,plot_legend=TRUE,...)
signature(x = "x12Single",which="sa",
xlab="Frequency",ylab="Decibels",
main="Spectrum",
col_bar="darkgrey",col_seasonal="red",col_td="blue",
lwd_bar=4,lwd_seasonal=4,lwd_td=4,plot_legend=TRUE,...)
signature(x = "spectrum",frequency,
xlab="Frequency",ylab="Decibels",
main="Spectrum",
col_bar="darkgrey",col_seasonal="red",col_td="blue",
lwd_bar=4,lwd_seasonal=4,lwd_td=4,plot_legend=TRUE,...)
Alexander Kowarik, Angelika Meraner
x12
,
plot
,
plotSeasFac
,
plotRsdAcf
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) #w/o outliers plot(s@x12Output,sa=TRUE,trend=TRUE,original=FALSE) plot(s) #with (all) outliers plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,log_transform=TRUE,lwd_out=1,pch_ao=4) plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,original=FALSE,showAlloutLines=TRUE, col_tc="purple")#,log_transform=TRUE)#,lwd_out=3) #with showOut plot(s,showOut="AO1960.Jun",sa=FALSE,trend=FALSE,annComp=TRUE,log_transform=TRUE) plot(s,showOut="AO1958.Mar",sa=TRUE,trend=TRUE,annComp=TRUE,annCompTrend=FALSE) plot(s,showOut="AO1950.Jun",annComp=FALSE,cex_out=3,pch_ao=19,col_ao="orange") plot(s,showOut="TC1954.Feb") plot(s,showOut="TC1954.Feb",col_tc="green3") #w/o legend plot(s,showAllout=TRUE,plot_legend=FALSE) plot(s,plot_legend=FALSE) plot(s,showOut="AO1950.1",plot_legend=FALSE,lwd_out=2,col_ao="purple") plot(s,showOut="TC1954.Feb",col_tc="orange",col_ao="magenta",plot_legend=FALSE) plot(s,showOut="AO1950.1",col_tc="orange",col_ao="magenta",plot_legend=FALSE) #Forecasts & Backcasts plot(s,forecast=TRUE) plot(s,backcast=TRUE,showLine=TRUE) plot(s,backcast=TRUE,forecast=TRUE,showCI=FALSE) plot(s,forecast=TRUE,points_fc=TRUE,col_fc="purple",lty_fc=2,lty_original=3, lwd_fc=0.9,lwd_ci=2) plot(s,sa=TRUE,plot_legend=FALSE) #Seasonal Factors and SI Ratios plotSeasFac(s) #Spectra plotSpec(s) plotSpec(s,highlight=FALSE) #Autocorrelations of the Residuals plotRsdAcf(s) plotRsdAcf(s,col_acf="black",lwd_acf=1) ## End(Not run)
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) #w/o outliers plot(s@x12Output,sa=TRUE,trend=TRUE,original=FALSE) plot(s) #with (all) outliers plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,log_transform=TRUE,lwd_out=1,pch_ao=4) plot(s,showAllout=TRUE,sa=TRUE,trend=TRUE,original=FALSE,showAlloutLines=TRUE, col_tc="purple")#,log_transform=TRUE)#,lwd_out=3) #with showOut plot(s,showOut="AO1960.Jun",sa=FALSE,trend=FALSE,annComp=TRUE,log_transform=TRUE) plot(s,showOut="AO1958.Mar",sa=TRUE,trend=TRUE,annComp=TRUE,annCompTrend=FALSE) plot(s,showOut="AO1950.Jun",annComp=FALSE,cex_out=3,pch_ao=19,col_ao="orange") plot(s,showOut="TC1954.Feb") plot(s,showOut="TC1954.Feb",col_tc="green3") #w/o legend plot(s,showAllout=TRUE,plot_legend=FALSE) plot(s,plot_legend=FALSE) plot(s,showOut="AO1950.1",plot_legend=FALSE,lwd_out=2,col_ao="purple") plot(s,showOut="TC1954.Feb",col_tc="orange",col_ao="magenta",plot_legend=FALSE) plot(s,showOut="AO1950.1",col_tc="orange",col_ao="magenta",plot_legend=FALSE) #Forecasts & Backcasts plot(s,forecast=TRUE) plot(s,backcast=TRUE,showLine=TRUE) plot(s,backcast=TRUE,forecast=TRUE,showCI=FALSE) plot(s,forecast=TRUE,points_fc=TRUE,col_fc="purple",lty_fc=2,lty_original=3, lwd_fc=0.9,lwd_ci=2) plot(s,sa=TRUE,plot_legend=FALSE) #Seasonal Factors and SI Ratios plotSeasFac(s) #Spectra plotSpec(s) plotSpec(s,highlight=FALSE) #Autocorrelations of the Residuals plotRsdAcf(s) plotRsdAcf(s,col_acf="black",lwd_acf=1) ## End(Not run)
prev
and cleanArchive
in Package x12 ~~Function prev
in package x12 reverts to previous parameter settings and output.
Function cleanHistory
resets x12OldParameter
and x12OldOutput
.
## S4 method for signature 'x12Single' prev(object,n=NULL) ## S4 method for signature 'x12Batch' prev(object,index=NULL,n=NULL) ## S4 method for signature 'x12Single' cleanHistory(object) ## S4 method for signature 'x12Batch' cleanHistory(object,index=NULL)
## S4 method for signature 'x12Single' prev(object,n=NULL) ## S4 method for signature 'x12Batch' prev(object,index=NULL,n=NULL) ## S4 method for signature 'x12Single' cleanHistory(object) ## S4 method for signature 'x12Batch' cleanHistory(object,index=NULL)
object |
object of class |
n |
index corresponding to a previous run. |
index |
index corresponding to (an) object(s) of class |
signature(object = "x12Single")
signature(object = "x12Batch")
cleanHistory is deprecated and cleanArchive should be used instead.
Alexander Kowarik
data(AirPassengersX12) summary(AirPassengersX12) # a maximum of 10 previous x12 runs are added to the summary summary(AirPassengersX12,oldOutput=10) #the x12Parameter and x12Output of the x12Single is set to the previous run of x12 Ap=prev(AirPassengersX12) summary(AirPassengersX12,oldOutput=10)
data(AirPassengersX12) summary(AirPassengersX12) # a maximum of 10 previous x12 runs are added to the summary summary(AirPassengersX12,oldOutput=10) #the x12Parameter and x12Output of the x12Single is set to the previous run of x12 Ap=prev(AirPassengersX12) summary(AirPassengersX12,oldOutput=10)
Still an early beta, so it will not work in specific situations
readSpc(file,filename=TRUE)
readSpc(file,filename=TRUE)
file |
character vector containing filenames of spc files |
filename |
if TRUE the filename (without) ".spc" will be used as name for the serie |
Not all arguments of an X12 spc file are supported, but the parameters described in x12
should be covered.
The function returns an object of class "x12Single" if the file argument has length 1, otherwise it returns an "x12Batch" object.
Alexander Kowarik
## Not run: x12SingleObject1 <- readSpc("D:/aaa.spc") x12SingleObject2 <- readSpc("D:/ak_b.SPC") x12BatchObject1 <- readSpc(c("D:/ak_b.SPC","D:/aaa.spc")) setwd("M:/kowarik/Test/x12test") lf <- list.files() lf <- lf[unlist(lapply(lf,function(x)substr(x,nchar(x)-2,nchar(x)))) %in%c("spc","SPC")] lf <- lf[-c(grep("ind",lf))] allSPC <- readSpc(lf) a <- x12(allSPC) plot(a@x12List[[1]]) summary(a@x12List[[1]]) ## End(Not run)
## Not run: x12SingleObject1 <- readSpc("D:/aaa.spc") x12SingleObject2 <- readSpc("D:/ak_b.SPC") x12BatchObject1 <- readSpc(c("D:/ak_b.SPC","D:/aaa.spc")) setwd("M:/kowarik/Test/x12test") lf <- list.files() lf <- lf[unlist(lapply(lf,function(x)substr(x,nchar(x)-2,nchar(x)))) %in%c("spc","SPC")] lf <- lf[-c(grep("ind",lf))] allSPC <- readSpc(lf) a <- x12(allSPC) plot(a@x12List[[1]]) summary(a@x12List[[1]]) ## End(Not run)
"spectrum"
Standardized object for saving the spectrum output of the x12 binaries in R. Used by functions in this package.
Objects can be created by calls of the form new("spectrum", ...)
.
frequency
:Object of class "numeric"
~~
spectrum
:Object of class "numeric"
~~
Alexander Kowarik
showClass("spectrum")
showClass("spectrum")
summary
in Package x12 ~~Delivers a diagnostics summary for x12
output.
## S4 method for signature 'x12Output' summary(object, fullSummary=FALSE, spectra.detail=FALSE, almostout=FALSE, rsd.autocorr=NULL, quality.stat=FALSE, likelihood.stat=FALSE, aape=FALSE, id.rsdseas=FALSE, slidingspans=FALSE, history=FALSE, identify=FALSE, print=TRUE) ## S4 method for signature 'x12Single' summary(object, fullSummary=FALSE, spectra.detail=FALSE, almostout=FALSE, rsd.autocorr=NULL, quality.stat=FALSE, likelihood.stat=FALSE, aape=FALSE, id.rsdseas=FALSE, slidingspans=FALSE, history=FALSE, identify=FALSE, oldOutput=NULL,print=TRUE) ## S4 method for signature 'x12Batch' summary(object, fullSummary=FALSE, spectra.detail=FALSE, almostout=FALSE, rsd.autocorr=NULL, quality.stat=FALSE, likelihood.stat=FALSE, aape=FALSE, id.rsdseas=FALSE, slidingspans=FALSE, history=FALSE, identify=FALSE, oldOutput=NULL,print=TRUE)
## S4 method for signature 'x12Output' summary(object, fullSummary=FALSE, spectra.detail=FALSE, almostout=FALSE, rsd.autocorr=NULL, quality.stat=FALSE, likelihood.stat=FALSE, aape=FALSE, id.rsdseas=FALSE, slidingspans=FALSE, history=FALSE, identify=FALSE, print=TRUE) ## S4 method for signature 'x12Single' summary(object, fullSummary=FALSE, spectra.detail=FALSE, almostout=FALSE, rsd.autocorr=NULL, quality.stat=FALSE, likelihood.stat=FALSE, aape=FALSE, id.rsdseas=FALSE, slidingspans=FALSE, history=FALSE, identify=FALSE, oldOutput=NULL,print=TRUE) ## S4 method for signature 'x12Batch' summary(object, fullSummary=FALSE, spectra.detail=FALSE, almostout=FALSE, rsd.autocorr=NULL, quality.stat=FALSE, likelihood.stat=FALSE, aape=FALSE, id.rsdseas=FALSE, slidingspans=FALSE, history=FALSE, identify=FALSE, oldOutput=NULL,print=TRUE)
object |
object of class |
fullSummary |
logical defining whether all available optional diagnostics below should be included in the summary. |
spectra.detail |
logical defining whether more detail on the spectra should be returned. |
almostout |
logical defining whether "almost" outliers should be returned. |
rsd.autocorr |
character or character vector specifying the type of autocorrelation of
the residuals that should be returned, i.e. the autocorrelations and/or partial autocorrelations
of the residuals and/or the autocorrelations of the squared residuals ( |
quality.stat |
logical defining whether the second Q statistic, i.e. the Q Statistic computed w/o the M2 Quality Control Statistic, and the M statistics for monitoring and quality assessment should be returned as well. |
likelihood.stat |
if |
aape |
logical defining whether the average absolute percentage error for forecasts should be returned. |
id.rsdseas |
logical defining whether the presence/absence of residual seasonality should be indicated. |
slidingspans |
logical defining whether the diagnostics output of the slidingspans analysis should be returned. |
history |
logical defining whether the diagnostics output of the (revision) history analysis should be returned. |
identify |
logical defining whether the (partial) autocorrelations of the residuals generated by the "identify" specification should be returned. |
oldOutput |
integer specifying the number of previous |
print |
TRUE/FALSE if the summary should be printed. |
signature(x = "x12Output")
signature(x = "x12Single")
signature(x = "x12Batch")
Alexander Kowarik, Angelika Meraner
## Not run: # Summary of an "x12Single" object x12path("../x12a.exe") s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) summary.output<-summary(s) s <- x12(setP(s,list(arima.model=c(0,1,1),arima.smodel=c(0,2,1)))) summary.output<-summary(s,oldOutput=1) s <- x12(setP(s,list(arima.model=c(0,1,1),arima.smodel=c(1,0,1)))) summary.output<-summary(s,fullSummary=TRUE,oldOutput=2) # Summary of an "x12Batch" object xb <- new("x12Batch",list(AirPassengers,AirPassengers, AirPassengers),tsName=c("air1","air2","air3")) xb <- x12(xb) xb <- setP(xb,list(arima.model=c(1,1,0),arima.smodel=c(1,1,0)),1) xb <- x12(xb) xb <- setP(xb,list(regression.variables=c("AO1955.5","AO1956.1","ao1959.3")),1) xb <- setP(xb,list(regression.variables=c("AO1955.4")),2) xb<- x12(xb) xb <- setP(xb,list(outlier.types="all")) xb <- setP(xb,list(outlier.critical=list(LS=3.5,TC=2.5)),1) xb <- setP(xb,list(regression.variables=c("lpyear")),3) xb<- x12(xb) summary.output<-summary(xb,oldOutput=3) ## End(Not run)
## Not run: # Summary of an "x12Single" object x12path("../x12a.exe") s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5),backcast_years=1/2)) s <- x12(s) summary.output<-summary(s) s <- x12(setP(s,list(arima.model=c(0,1,1),arima.smodel=c(0,2,1)))) summary.output<-summary(s,oldOutput=1) s <- x12(setP(s,list(arima.model=c(0,1,1),arima.smodel=c(1,0,1)))) summary.output<-summary(s,fullSummary=TRUE,oldOutput=2) # Summary of an "x12Batch" object xb <- new("x12Batch",list(AirPassengers,AirPassengers, AirPassengers),tsName=c("air1","air2","air3")) xb <- x12(xb) xb <- setP(xb,list(arima.model=c(1,1,0),arima.smodel=c(1,1,0)),1) xb <- x12(xb) xb <- setP(xb,list(regression.variables=c("AO1955.5","AO1956.1","ao1959.3")),1) xb <- setP(xb,list(regression.variables=c("AO1955.4")),2) xb<- x12(xb) xb <- setP(xb,list(outlier.types="all")) xb <- setP(xb,list(outlier.critical=list(LS=3.5,TC=2.5)),1) xb <- setP(xb,list(regression.variables=c("lpyear")),3) xb<- x12(xb) summary.output<-summary(xb,oldOutput=3) ## End(Not run)
Diagnostics summary for objects of class "x12work"
.
## S3 method for class 'x12work' summary(object,fullSummary=FALSE, spectra.detail=FALSE,almostout=FALSE, rsd.autocorr=NULL,quality.stat=FALSE,likelihood.stat=FALSE,aape=FALSE,id.rsdseas=FALSE, slidingspans=FALSE,history=FALSE,identify=FALSE,...)
## S3 method for class 'x12work' summary(object,fullSummary=FALSE, spectra.detail=FALSE,almostout=FALSE, rsd.autocorr=NULL,quality.stat=FALSE,likelihood.stat=FALSE,aape=FALSE,id.rsdseas=FALSE, slidingspans=FALSE,history=FALSE,identify=FALSE,...)
object |
an object of class |
fullSummary |
logical defining whether all available optional diagnostics below should be included in the summary. |
spectra.detail |
logical defining whether more detail on the spectra should be returned. |
almostout |
logical defining whether "almost" outliers should be returned. |
rsd.autocorr |
character or character vector specifying the type of autocorrelation of
the residuals that should be returned, i.e. the autocorrelations and/or partial autocorrelations
of the residuals and/or the autocorrelations of the squared residuals ( |
quality.stat |
logical defining whether the second Q statistic, i.e. the Q Statistic computed w/o the M2 Quality Control Statistic, and the M statistics for monitoring and quality assessment should be returned as well. |
likelihood.stat |
if |
aape |
logical defining whether the average absolute percentage error for forecasts should be returned. |
id.rsdseas |
logical defining whether the presence/absence of residual seasonality should be indicated. |
slidingspans |
logical defining whether the diagnostics output of the slidingspans analysis should be returned. |
history |
logical defining whether the diagnostics output of the (revision) history analysis should be returned. |
identify |
logical defining whether the (partial) autocorrelations of the residuals generated by the "identify" specification should be returned. |
... |
ignored at the moment |
Delivers a diagnostics summary.
Alexander Kowarik, Angelika Meraner
x12work
,
diagnostics-class
,
x12-methods
data(AirPassengers) ## Not run: summary(x12work(AirPassengers,...),quality.stat=TRUE,res.autocorr="acf") ## End(Not run)
data(AirPassengers) ## Not run: summary(x12work(AirPassengers,...),quality.stat=TRUE,res.autocorr="acf") ## End(Not run)
Combination of start() and end() for ts objects-
times(x) ## S4 method for signature 'x12Output' times(x) ## S4 method for signature 'x12Single' times(x)
times(x) ## S4 method for signature 'x12Output' times(x) ## S4 method for signature 'x12Single' times(x)
x |
a x12Single or x12Output object |
Returns a list with start and end for original, backcast and forecast timeseries
signature(x = "x12Output")
signature(x = "x12Single")
Alexander Kowarik
x12
,
x12Single
,
x12Batch
,
x12Parameter
,
x12List
,
x12Output
,
x12BaseInfo
,
summary.x12work
,
x12work
x12
in Package x12 ~~~~ Methods for function x12
in package x12 ~~
x12(object,x12Parameter=new("x12Parameter"),x12BaseInfo=new("x12BaseInfo"),...)
x12(object,x12Parameter=new("x12Parameter"),x12BaseInfo=new("x12BaseInfo"),...)
object |
object of class |
x12Parameter |
object of class |
x12BaseInfo |
object of class |
... |
at the moment only forceRun=FALSE |
signature(object = "ts")
signature(object = "x12Single")
signature(object = "x12Batch")
An S4 object of class x12Output-class
if object
is of class ts
An S4 object of class x12Single-class
if object
is of class x12Single-class
An S4 object of class x12Batch-class
if object
is of class x12Batch-class
Parallelization is implemented for x12Batch objects with help of the package 'parallel'. To process in parallel set the option 'x12.parallel' to an integer value representing the number of cores to use ( options(x12.parallel=2) ). Afterwards all calls to the function 'x12' on an object of class 'x12Batch' will be parallelized (For reseting use options(x12.parallel=NULL) ).
cleanHistory is deprecated and cleanArchive should be used instead.
Alexander Kowarik, Angelika Meraner
https://www.census.gov/data/software/x13as.html
Alexander Kowarik, Angelika Meraner, Matthias Templ, Daniel Schopfhauser (2014). Seasonal Adjustment with the R Packages x12 and x12GUI. Journal of Statistical Software, 62(2), 1-21. URL http://www.jstatsoft.org/v62/i02/.
summary
,
plot
,
x12env
,
setP
,
getP
,
loadP
,
saveP
,
prev
,
cleanArchive
,
crossVal
## Not run: xts <- x12(AirPassengers) summary(xts) xs <- x12(new("x12Single",ts=AirPassengers)) summary(xs) xb<-x12(new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers))) summary(xb) #Create new batch object with 4 time series xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) # change the automdl to FALSE in all 4 elements xb <- setP(xb,list(automdl=FALSE)) #change the arima.model and arima.smodel setting for the first ts object xb <- setP(xb,list(arima.model=c(1,1,0),arima.smodel=c(1,1,0)),1) #change the arima.model and arima.smodel setting for the second ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2) #change the arima.model and arima.smodel setting for the third ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(1,1,1)),3) #change the arima.model and arima.smodel setting for the fourth ts object xb <- setP(xb,list(arima.model=c(1,1,1),arima.smodel=c(1,1,1)),4) #run x12 on all series xb <- x12(xb) summary(xb) #Set automdl=TRUE for the first ts xb <- setP(xb,list(automdl=TRUE),1) #rerun x12 on all series (the binaries will only run on the first one) xb <- x12(xb) #summary with oldOutput summary(xb,oldOutput=10) #Change the parameter and output of the first series back to the first run xb <- prev(xb,index=1,n=1) #summary with oldOutput (--- No valid previous runs. ---) summary(xb,oldOutput=10) ## End(Not run)
## Not run: xts <- x12(AirPassengers) summary(xts) xs <- x12(new("x12Single",ts=AirPassengers)) summary(xs) xb<-x12(new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers))) summary(xb) #Create new batch object with 4 time series xb <- new("x12Batch",list(AirPassengers,AirPassengers,AirPassengers,AirPassengers)) # change the automdl to FALSE in all 4 elements xb <- setP(xb,list(automdl=FALSE)) #change the arima.model and arima.smodel setting for the first ts object xb <- setP(xb,list(arima.model=c(1,1,0),arima.smodel=c(1,1,0)),1) #change the arima.model and arima.smodel setting for the second ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2) #change the arima.model and arima.smodel setting for the third ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(1,1,1)),3) #change the arima.model and arima.smodel setting for the fourth ts object xb <- setP(xb,list(arima.model=c(1,1,1),arima.smodel=c(1,1,1)),4) #run x12 on all series xb <- x12(xb) summary(xb) #Set automdl=TRUE for the first ts xb <- setP(xb,list(automdl=TRUE),1) #rerun x12 on all series (the binaries will only run on the first one) xb <- x12(xb) #summary with oldOutput summary(xb,oldOutput=10) #Change the parameter and output of the first series back to the first run xb <- prev(xb,index=1,n=1) #summary with oldOutput (--- No valid previous runs. ---) summary(xb,oldOutput=10) ## End(Not run)
"x12BaseInfo"
Baseinfo for use with the x12
function and classes.
Objects can be created by calls of the form new("x12BaseInfo", x12path, use, showWarnings)
.
x12path
:Object of class "characterOrNULL"
~~
use
:Object of class "character"
~~
showWarnings
:Object of class "logical"
~~
No methods defined with class "x12BaseInfo" in the signature.
Alexander Kowarik
x12
,
x12Single
,
x12Batch
,
x12Parameter
,
x12List
,
x12Output
showClass("x12BaseInfo")
showClass("x12BaseInfo")
"x12Batch"
Concatenation of multiple x12Single-class
objects.
Objects can be created by calls of the form new("x12Batch", tsList, tsName, x12BaseInfo)
.
x12List
:Object of class "x12List"
~~
x12BaseInfo
:Object of class "x12BaseInfo"
~~
setP
signature(object = "x12Batch")
: ...
getP
signature(object = "x12Batch")
: ...
prev
signature(object = "x12Batch")
: ...
cleanArchive
signature(object = "x12Batch")
: ...
loadP
signature(object = "x12Batch")
: ...
saveP
signature(object = "x12Batch")
: ...
summary
signature(object = "x12Batch")
: ...
x12
signature(object = "x12Batch")
: ...
signature(x = "x12Batch")
: ...
signature(x = "x12Batch")
: ...
cleanHistory
signature(object = "x12Batch")
: ...
cleanHistory is deprecated and cleanArchive should be used instead.
Alexander Kowarik
Alexander Kowarik, Angelika Meraner, Matthias Templ, Daniel Schopfhauser (2014). Seasonal Adjustment with the R Packages x12 and x12GUI. Journal of Statistical Software, 62(2), 1-21. URL http://www.jstatsoft.org/v62/i02/.
x12
,
x12Single
,
x12Parameter
,
x12List
,
x12Output
,
x12BaseInfo
,
summary
,
getP
,
x12work
## Not run: #object containing 4 time series and the corresponding parameters and output data(AirPassengersX12Batch) summary(AirPassengersX12Batch) #summary with oldOutput summary(AirPassengersX12Batch,oldOutput=10) #Change the parameter and output of the first series back to the first run AirPassengersX12Batch <- prev(AirPassengersX12Batch,index=1,n=1) #summary with oldOutput (--- No valid previous runs. ---) summary(AirPassengersX12Batch,oldOutput=10) #Create new batch object with 4 time series xb <- new("x12Batch",list(AirPassengers,ldeaths,nottem,UKgas), c("Air","ldeaths","nottem","UKgas")) # change outlier.types to "all" in all 4 elements xb <- setP(xb,list(outlier.types="all")) #change the arima.model and arima.smodel setting for the first ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),1) #change the arima.model and arima.smodel setting for the second ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2) #change the arima.model and arima.smodel setting for the third ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),3) #change the arima.model and arima.smodel setting for the fourth ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),4) #run x12 on all series xb <- x12(xb) summary(xb) #Set automdl=TRUE for the first ts xb <- setP(xb,list(automdl=TRUE),1) #rerun x12 on all series (the binaries will only run on the first one) xb <- x12(xb) #summary with oldOutput summary(xb,oldOutput=10) #Change the parameter and output of the first series back to the first run xb <- prev(xb,index=1,n=1) #summary with oldOutput (--- No valid previous runs. ---) summary(xb,oldOutput=10) #Create new batch object by combining objects of class x12Single s1 <- new("x12Single",ts=AirPassengers,tsName="air") s1 <- setP(s1,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5))) s2 <- new("x12Single",ts=UKgas,tsName="UKgas") s2 <- setP(s2,list(slidingspans=TRUE,history=TRUE, history.estimates=c("sadj","sadjchng","trend","trendchng","seasonal","aic"), history.sadjlags=c(1,2),automdl=TRUE)) b <- new("x12Batch",list(s1,s2)) b <- x12(b) ## End(Not run)
## Not run: #object containing 4 time series and the corresponding parameters and output data(AirPassengersX12Batch) summary(AirPassengersX12Batch) #summary with oldOutput summary(AirPassengersX12Batch,oldOutput=10) #Change the parameter and output of the first series back to the first run AirPassengersX12Batch <- prev(AirPassengersX12Batch,index=1,n=1) #summary with oldOutput (--- No valid previous runs. ---) summary(AirPassengersX12Batch,oldOutput=10) #Create new batch object with 4 time series xb <- new("x12Batch",list(AirPassengers,ldeaths,nottem,UKgas), c("Air","ldeaths","nottem","UKgas")) # change outlier.types to "all" in all 4 elements xb <- setP(xb,list(outlier.types="all")) #change the arima.model and arima.smodel setting for the first ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),1) #change the arima.model and arima.smodel setting for the second ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),2) #change the arima.model and arima.smodel setting for the third ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),3) #change the arima.model and arima.smodel setting for the fourth ts object xb <- setP(xb,list(arima.model=c(0,1,1),arima.smodel=c(0,1,1)),4) #run x12 on all series xb <- x12(xb) summary(xb) #Set automdl=TRUE for the first ts xb <- setP(xb,list(automdl=TRUE),1) #rerun x12 on all series (the binaries will only run on the first one) xb <- x12(xb) #summary with oldOutput summary(xb,oldOutput=10) #Change the parameter and output of the first series back to the first run xb <- prev(xb,index=1,n=1) #summary with oldOutput (--- No valid previous runs. ---) summary(xb,oldOutput=10) #Create new batch object by combining objects of class x12Single s1 <- new("x12Single",ts=AirPassengers,tsName="air") s1 <- setP(s1,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5))) s2 <- new("x12Single",ts=UKgas,tsName="UKgas") s2 <- setP(s2,list(slidingspans=TRUE,history=TRUE, history.estimates=c("sadj","sadjchng","trend","trendchng","seasonal","aic"), history.sadjlags=c(1,2),automdl=TRUE)) b <- new("x12Batch",list(s1,s2)) b <- x12(b) ## End(Not run)
"x12List"
Support class for x12Batch-class
containing multiple x12Single-class
.
Objects can be created by calls of the form new("x12List", ...)
.
.Data
:Object of class "list"
~~
Class "list"
, from data part.
Class "vector"
, by class "list"
, distance 2.
No methods defined with class "x12List"
in the signature.
Alexander Kowarik
x12
,
x12Single
,
x12Batch
,
x12Parameter
,
x12Output
,
x12BaseInfo
showClass("x12List")
showClass("x12List")
"x12Output"
Output class for x12
.
Objects can be created by calls of the form new("x12Output", ...)
.
a1
:Object of class "ts"
- the original time series.
d10
:Object of class "ts"
- the final seasonal factors.
d11
:Object of class "ts"
- the final seasonally adjusted data.
d12
:Object of class "ts"
- the final trend cycle.
d13
:Object of class "ts"
- the final irregular components.
d16
:Object of class "ts"
- the combined adjustment factors.
c17
:Object of class "ts"
- the final weights for the irregular component.
d9
:Object of class "ts"
- the final replacements for the SI ratios.
e2
:Object of class "ts"
- the differenced, transformed, seasonally adjusted data.
d8
:Object of class "ts"
- the final unmodified SI ratios.
b1
:Object of class "ts"
- the prior adjusted original series.
td
:Object of class "tsOrNULL"
- the trading day component
otl
:Object of class "tsOrNULL"
- the outlier regression series
sp0
:Object of class "spectrum"
- the spectrum of the original series.
sp1
:Object of class "spectrum"
- the spectrum of the differenced seasonally adjusted series.
sp2
:Object of class "spectrum"
- the spectrum of modified irregular series.
spr
:Object of class "spectrum"
- the spectrum of the regARIMA model residuals.
forecast
:Object of class "fbcast"
- the point forecasts with prediction intervals
backcast
:Object of class "fbcast"
- the point backcasts with prediction intervals
dg
:Object of class "list"
, containing several seasonal adjustment and regARIMA modeling diagnostics, i.e.:x11regress, transform, samode, seasonalma, trendma, arimamdl, automdl, regmdl, nout, nautoout, nalmostout, almostoutlier, crit,
outlier, userdefined, autooutlier, peaks.seas, peaks.td, id.seas, id.rsdseas, spcrsd, spcori, spcsa, spcirr, m1, m2, m3, m4, m5, m6,
m7, m8, m9, m10, m11, q, q2, nmfail, loglikelihood, aic, aicc, bic, hq, aape, autotransform, ifout, rsd.acf, rsd.pacf, rsd.acf2,
tsName, frequency, span,...
file
:Object of class "character"
- path to the output directory and filename
tblnames
:Object of class "character"
- tables read into R
Rtblnames
:Object of class "character"
- names of tables read into R
signature(object = "x12Output")
: ...
signature(object = "x12Output")
: ...
signature(object = "x12Output")
: ...
signature(object = "x12Output")
: ...
signature(object = "x12Output")
: ...
Alexander Kowarik, Angelika Meraner
x12
,
x12Single
,
x12Batch
,
x12Parameter
,
x12List
,
x12Output
,
x12BaseInfo
,
summary.x12work
,
x12work
data(AirPassengersX12) summary(AirPassengersX12) showClass("x12Output")
data(AirPassengersX12) summary(AirPassengersX12) showClass("x12Output")
"x12Parameter"
Parameter class for x12
.
Objects can be created by calls of the form new("x12Parameter", ...)
.
series.span
:Object of class "numericOrNULLOrcharacter"
- vector of length 4, limiting the data used for the calculations and analysis to a certain time interval.
Start and end date of said time interval can be specified by 4 integers in the format c(start year, start seasonal period, end year, end seasonal period)
If the start or end date of the time series object should be used, the respective year and seasonal period are to be set to NA
.
series.modelspan
:Object of class "numericOrNULLOrcharacter"
- vector of length 4, defining the start and end date of the time interval of the data
that should be used to determine all regARIMA model coefficients. Specified in the same way as span
.
transform.function
:Object of class "character"
- transform parameter for x12 ("auto"
, "log"
, "none"
).
transform.power
:Object of class "numericOrNULL"
- numeric value specifying the power of the Box Cox power transformation.
transform.adjust
:Object of class "characterOrNULL"
- determines the type of adjustment to be performed,
i.e. transform.adjust="lom"
for length-of-month adjustment on monthly data, transform.adjust="loq"
for length-of-quarter adjustment on quarterly data
or transform.adjust="lpyear"
for leap year adjustment of monthly or quarterly data (which is only allowed when either transform.power=0
or transform.function="log"
).
regression.variables
:Object of class "characterOrNULL"
- character or character vector representing the names of the regression variables.
regression.user
:Object of class "characterOrNULL"
- character or character vector defining the user parameters in the regression argument.
regression.file
:Object of class "characterOrNULL"
- path to the file containing the data values of all regression.user
variables.
regression.usertype
:Object of class "characterOrNULL"
- character or character vector assigning a type of model-estimated regression effect
on each user parameter in the regression argument ("seasonal"
, "td"
, "lpyear"
, "user"
, ...).
By specifying a character vector of length greater one each variable can be given its own type.
Otherwise the same type will be used for all user parameters.
regression.centeruser
:Object of class "characterOrNULL"
- character specifying the removal of the (sample) mean or the seasonal means from
the user parameters in the regression argument ("mean"
, "seasonal"
).
Default is no modification of the respective user-defined regressors.
regression.start
:Object of class "numericOrNULLOrcharacter"
- start date for the values of the regression.user
variables, specified as a vector of two integers in the format c(year, seasonal period)
.
regression.aictest
:Object of class "characterOrNULL"
- character vector defining the regression variables for which an AIC test is to be performed.
outlier.types
:Object of class "characterOrNULL"
- to enable the "outlier" specification in the spc file, this parameter has to be defined by a character or character vector determining the method(s) used for outlier detection ("AO"
, "LS"
, "TC"
, "all"
).
outlier.critical
:Object of class "listOrNULLOrnumeric"
- number specifying the critical value used for outlier detection
(same value used for all types of outliers)
or named list (possible names of list elements being AO
,LS
and TC
)
where each list element specifies the respective critical value
used for detecting the corresponding type of outlier.
If not specified, the default critical value is used.
outlier.span
:Object of class "numericOrNULLOrcharacter"
- vector of length 4, defining the span for outlier detection. Specified in the same way as span
.
outlier.method
:Object of class "characterOrNULL"
- character determining how detected outliers should be added to the model ("addone"
, "addall"
).
If not specified,"addone"
is used by default.
identify
:Object of class "logical"
- if TRUE
, the "identify" specification will be enabled in the spc file.
identify.diff
:Object of class "numericOrNULL"
- number or vector representing the orders of nonseasonal differences specified, default is 0.
identify.sdiff
:Object of class "numericOrNULL"
- number or vector representing the orders of seasonal differences specified, default is 0.
identify.maxlag
:Object of class "numericOrNULL"
- number of lags specified for the ACFs and PACFs, default is 36 for monthly series and 12 for quarterly series.
arima.model
:Object of class "numericOrNULL"
- vector of length 3, defining the arima parameters.
arima.smodel
:Object of class "numericOrNULL"
- vector of length 3, defining the sarima parameters.
arima.ar
:Object of class "numericOrNULLOrcharacter"
- numeric or character vector specifying the initial values for nonseasonal and seasonal autoregressive parameters in the order that they appear in the arima.model
argument. Empty positions are created with NA.
arima.ma
:Object of class "numericOrNULLOrcharacter"
- numeric or character vector specifying the initial values for all moving average parameters in the order that they appear in the arima.model
argument. Empty positions are created with NA.
automdl
:Object of class "logical"
- TRUE
/FALSE
for activating auto modeling.
automdl.acceptdefault
:Object of class "logical"
- logical for automdl
defining whether the default model should be chosen if the Ljung-Box Q statistic
for its model residuals is acceptable.
automdl.balanced
:Object of class "logical"
- logical for automdl
defining whether the automatic model procedure will tend towards balanced
models. TRUE
yields the same preference as the TRAMO program.
automdl.maxorder
:Object of class "numeric"
- vector of length 2, specifying the maximum order for automdl
. Empty positions are created with NA.
automdl.maxdiff
:Object of class "numeric"
- vector of length 2, specifying the maximum diff. order for automdl
. Empty positions are created with NA.
forecast_years
:Object of class "numericOrNULL"
- number of years to forecast, default is 1 year.
backcast_years
:Object of class "numericOrNULL"
- number of years to backcast, default is no backcasts.
forecast_conf
:Object of class "numeric"
- probability for the confidence interval of forecasts.
forecast_save
:Object of class "character"
either "ftr"(in transformed scaling) or "fct"(in original scaling)
estimate
:Object of class "logical"
- if TRUE
, the term "estimate" will be added to the spc file.
estimate.outofsample
:Object of class "logical"
- logical defining whether "out of sample" or "within sample" forecast errors
should be used in calculating the average magnitude of forecast errors over the last three years.
check
:Object of class "logical"
- TRUE
/FALSE
for activating the "check" specification in the spc file.
check.maxlag
:Object of class "numericOrNULL"
- the number of lags requested for the residual sample ACF and PACF, default is 24 for monthly series and 8 for quarterly series.
slidingspans
:Object of class "logical"
- if TRUE
, "slidingspans" specification will be enabled in the spc file.
slidingspans.fixmdl
:Object of class "characterOrNULL"
- ("yes"
(default), "no"
, "clear"
).
slidingspans.fixreg
:Object of class "characterOrNULL"
- character or character vector specifying the trading day, holiday, outlier or other user-defined regression effects to be fixed ("td"
, "holiday"
, "outlier"
, "user"
).
All other regression coefficients will be re-estimated for each sliding span.
slidingspans.length
:Object of class "numericOrNULL"
- numeric value specifying the length of each span in months or quarters (>3 years, <17 years).
slidingspans.numspans
:Object of class "numericOrNULL"
- numeric value specifying the number of sliding spans used to generate output for comparisons (must be between 2 and 4, inclusive).
slidingspans.outlier
:Object of class "characterOrNULL"
- ("keep"
(default), "remove"
, "yes"
).
slidingspans.additivesa
:Object of class "characterOrNULL"
- ("difference"
(default), "percent"
).
slidingspans.start
:Object of class "numericOrNULLOrcharacter"
- specified as a vector of two integers in the format c(start year, start seasonal period)
.
history
:if TRUE
, the history
specification will be enabled.
history.estimates
:Object of class "characterOrNULL"
- character or character vector determining which estimates from the regARIMA modeling and/or the x11 seasonal adjustment will be analyzed in the history analysis ("sadj"
(default), "sadjchng"
, "trend"
, "trendchng"
, "seasonal"
, "aic"
, "fcst"
).
history.fixmdl
:Object of class "logical"
- logical determining whether the regARIMA model will be re-estimated during the history analysis.
history.fixreg
:Object of class "characterOrNULL"
- character or character vector specifying the trading day, holiday, outlier or other user-defined regression effects to be fixed ("td"
, "holiday"
, "outlier"
, "user"
). All other coefficients will be re-estimated for each history span.
history.outlier
:Object of class "characterOrNULL"
- ("keep"
(default), "remove"
, "auto"
)
history.sadjlags
:Object of class "numericOrNULL"
- integer or vector specifying up to 5 revision lags (each >0) that will be analyzed in the revisions analysis of lagged seasonal adjustments.
history.trendlags
:Object of class "numericOrNULL"
- integer or vector specifying up to 5 revision lags (each >0) that will be used in the revision history of the lagged trend components.
history.start
:Object of class "numericOrNULLOrcharacter"
- specified as a vector of two integers in the format c(start year, start seasonal period)
.
history.target
:Object of class "characterOrNULL"
- character determining whether the revisions of the seasonal adjustments and trends calculated at the lags specified in history.sadjlags
and history.trendlags
should be defined by the deviation from the concurrent estimate or the deviation from the final estimate ("final"
(default), "concurrent"
).
x11.sigmalim
:Object of class "numericOrNULL"
- vector of length 2, defining the limits for sigma in the x11 methodology,
used to downweight extreme irregular values in the internal seasonal adjustment iterations.
x11.type
:Object of class "characterOrNULL"
- character, i.e. "summary"
, "trend"
or "sa"
. If x11.type="trend"
,
x11 will only be used to estimate the final trend-cycle as well as the irregular components and to adjust according to trading days.
The default setting is type="sa"
where a seasonal decomposition of the series is calculated.
x11.sfshort
:Object of class "logical"
- logical controlling the seasonal filter to be used if the series is at most 5 years long.
If TRUE
, the arguments of the seasonalma
filter will be used wherever possible.
If FALSE
, a stable seasonal filter will be used irrespective of seasonalma
.
x11.samode
:Object of class "characterOrNULL"
- character defining the type of seasonal adjustment decomposition calculated
("mult"
, "add"
, "pseudoadd"
, "logadd"
).
x11.seasonalma
:Object of class "characterOrNULL"
- character or character vector of the format c("snxm","snxm", ...)
defining which seasonal nxm moving average(s) should be used for which calendar months or quarters
to estimate the seasonal factors.
If only one ma is specified, the same ma will be used for all months or quarters.
If not specified, the program will invoke an automatic choice.
x11.trendma
:Object of class "numericOrNULL"
- integer defining the type of Henderson moving average used for estimating
the final trend cycle.
If not specified, the program will invoke an automatic choice.
x11.appendfcst
:Object of class "logical"
- logical defining whether forecasts should be included in certain x11 tables.
x11.appendbcst
:Object of class "logical"
- logical defining whether forecasts should be included in certain x11 tables.
x11.calendarsigma
:Object of class "characterOrNULL"
- regulates the way the standard errors used for the detection and adjustment of
extreme values should be computed ("all"
, "signif"
, "select"
or no specification).
x11.excludefcst
:Object of class "logical"
- logical defining if forecasts and backcasts from the regARIMA model
should not be used in the generation of extreme values in the seasonal adjustment routines.
x11.final
:Object of class "character"
- character or character vector specifying which type(s) of prior adjustment factors should be
removed from the final seasonally adjusted series ("AO"
, "LS"
, "TC"
, "user"
, "none"
).
x11regression
:Object of class "logical"
- if TRUE
, x11Regression will be performed using the respective regression and outlier commands above,
i.e. regression.variables
, regression.user
, regression.file
, regression.usertype
, regression.centeruser
and regression.start
as well as outlier.critical
, outlier.span
and outlier.method
.
Alexander Kowarik, Angelika Meraner
showClass("x12Parameter")
showClass("x12Parameter")
"x12env"
is used to store the x12path and x13path (and more for the GUI).
x12env x12path(path=NULL) putd(x,value) getd(x, mode="any") rmd(x) existd(x, mode="any")
x12env x12path(path=NULL) putd(x,value) getd(x, mode="any") rmd(x) existd(x, mode="any")
path |
The path to the X12 or X13 binaries. |
x |
a character for the name |
value |
value that should be assigned to the object with name x. |
mode |
the mode or type of object sought |
Alexander Kowarik
## Not run: x12path() x12path("d:/x12/x12a.exe") x12path() getd("x12path") ## End(Not run)
## Not run: x12path() x12path("d:/x12/x12a.exe") x12path() getd("x12path") ## End(Not run)
"x12Single"
Class consisting of all information for x12
.
Objects can be created by calls of the form new("x12Single", ...)
.
ts
:Object of class ts
x12Parameter
:Object of class x12Parameter-class
x12Output
:Object of class x12Output-class
x12OldParameter
:Object of class list
x12OldOutput
:Object of class list
tsName
:Object of class characterOrNULL
firstRun
:Object of class logical
setP
signature(object = "x12Single")
getP
signature(object = "x12Single")
prev
signature(object = "x12Single")
cleanArchive
signature(object = "x12Single")
loadP
signature(object = "x12Single")
saveP
signature(object = "x12Single")
summary
signature(object = "x12Single")
x12
signature(object = "x12Single")
plot
signature(object = "x12Single")
crossVal
signature(object = "x12Single")
plotSpec
signature(object = "x12Single")
plotSeasFac
signature(object = "x12Single")
plotRsdAcf
signature(object = "x12Single")
cleanHistory
signature(object = "x12Single")
cleanHistory is deprecated and cleanArchive should be used instead.
Alexander Kowarik
x12
,
x12Batch
,
x12Parameter
,
x12List
,
x12Output
,
x12BaseInfo
,
summary
,
getP
,
x12work
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5))) s <- x12(s) ## End(Not run)
## Not run: s <- new("x12Single",ts=AirPassengers,tsName="air") s <- setP(s,list(estimate=TRUE,regression.variables="AO1950.1",outlier.types="all", outlier.critical=list(LS=3.5,TC=2.5))) s <- x12(s) ## End(Not run)
A wrapper function for the x12 binaries. It creates a specification file for an R time series and runs x12, afterwards the output is read into R.
x12work(tso,period=frequency(tso),file="Rout", series.span=NULL,series.modelspan=NULL, transform.function="auto",transform.power=NULL,transform.adjust=NULL, regression.variables=NULL,regression.user=NULL,regression.file=NULL, regression.usertype=NULL,regression.centeruser=NULL,regression.start=NULL, regression.aictest=NULL, outlier.types=NULL,outlier.critical=NULL,outlier.span=NULL,outlier.method=NULL, identify=FALSE,identify.diff=NULL,identify.sdiff=NULL,identify.maxlag=NULL, arima.model=NULL,arima.smodel=NULL,arima.ar=NULL,arima.ma=NULL, automdl=FALSE,automdl.acceptdefault=FALSE,automdl.balanced=TRUE, automdl.maxorder=c(3,2),automdl.maxdiff=c(1,1), forecast_years=NULL,backcast_years=NULL,forecast_conf=.95, forecast_save="ftr", estimate=FALSE,estimate.outofsample=TRUE, check=TRUE,check.maxlag=NULL, slidingspans=FALSE, slidingspans.fixmdl=NULL,slidingspans.fixreg=NULL, slidingspans.length=NULL,slidingspans.numspans=NULL, slidingspans.outlier=NULL, slidingspans.additivesa=NULL,slidingspans.start=NULL, history=FALSE, history.estimates=NULL,history.fixmdl=FALSE, history.fixreg=NULL,history.outlier=NULL, history.sadjlags=NULL,history.trendlags=NULL, history.start=NULL,history.target=NULL, x11.sigmalim=c(1.5,2.5),x11.type=NULL,x11.sfshort=FALSE,x11.samode=NULL, x11.seasonalma=NULL,x11.trendma=NULL, x11.appendfcst=TRUE,x11.appendbcst=FALSE,x11.calendarsigma=NULL, x11.excludefcst=TRUE,x11.final="user", x11regression=FALSE, tblnames=NULL,Rtblnames=NULL, x12path=NULL,use="x12",keep_x12out=TRUE,showWarnings=TRUE)
x12work(tso,period=frequency(tso),file="Rout", series.span=NULL,series.modelspan=NULL, transform.function="auto",transform.power=NULL,transform.adjust=NULL, regression.variables=NULL,regression.user=NULL,regression.file=NULL, regression.usertype=NULL,regression.centeruser=NULL,regression.start=NULL, regression.aictest=NULL, outlier.types=NULL,outlier.critical=NULL,outlier.span=NULL,outlier.method=NULL, identify=FALSE,identify.diff=NULL,identify.sdiff=NULL,identify.maxlag=NULL, arima.model=NULL,arima.smodel=NULL,arima.ar=NULL,arima.ma=NULL, automdl=FALSE,automdl.acceptdefault=FALSE,automdl.balanced=TRUE, automdl.maxorder=c(3,2),automdl.maxdiff=c(1,1), forecast_years=NULL,backcast_years=NULL,forecast_conf=.95, forecast_save="ftr", estimate=FALSE,estimate.outofsample=TRUE, check=TRUE,check.maxlag=NULL, slidingspans=FALSE, slidingspans.fixmdl=NULL,slidingspans.fixreg=NULL, slidingspans.length=NULL,slidingspans.numspans=NULL, slidingspans.outlier=NULL, slidingspans.additivesa=NULL,slidingspans.start=NULL, history=FALSE, history.estimates=NULL,history.fixmdl=FALSE, history.fixreg=NULL,history.outlier=NULL, history.sadjlags=NULL,history.trendlags=NULL, history.start=NULL,history.target=NULL, x11.sigmalim=c(1.5,2.5),x11.type=NULL,x11.sfshort=FALSE,x11.samode=NULL, x11.seasonalma=NULL,x11.trendma=NULL, x11.appendfcst=TRUE,x11.appendbcst=FALSE,x11.calendarsigma=NULL, x11.excludefcst=TRUE,x11.final="user", x11regression=FALSE, tblnames=NULL,Rtblnames=NULL, x12path=NULL,use="x12",keep_x12out=TRUE,showWarnings=TRUE)
tso |
a time series object. |
period |
frequency of the time series. |
file |
path to the output directory and filename, default is the working directory and |
series.span |
vector of length 4, limiting the data used for the calculations and analysis to a certain time interval. |
series.modelspan |
vector of length 4, defining the start and end date of the time interval of the data
that should be used to determine all regARIMA model coefficients. Specified in the same way as |
transform.function |
transform parameter for x12 ( |
transform.power |
numeric value specifying the power of the Box Cox power transformation. |
transform.adjust |
determines the type of adjustment to be performed,
i.e. |
regression.variables |
character or character vector representing the names of the regression variables. |
regression.user |
character or character vector defining the user parameters in the regression argument. |
regression.file |
path to the file containing the data values of all |
regression.usertype |
character or character vector assigning a type of model-estimated regression effect
on each user parameter in the regression argument ( |
regression.centeruser |
character specifying the removal of the (sample) mean or the seasonal means from
the user parameters in the regression argument ( |
regression.start |
start date for the values of the |
regression.aictest |
character vector defining the regression variables for which an AIC test is to be performed. |
outlier.types |
to enable the "outlier" specification in the spc file, this parameter has to be defined by a character or character vector determining the method(s) used for outlier detection ( |
outlier.critical |
number specifying the critical value used for outlier detection
(same value used for all types of outliers)
or named list (possible names of list elements being |
outlier.span |
vector of length 2, defining the span for outlier detection. |
outlier.method |
character determining how detected outliers should be added to the model ( |
identify |
Object of class |
identify.diff |
number or vector representing the orders of nonseasonal differences specified, default is 0. |
identify.sdiff |
number or vector representing the orders of seasonal differences specified, default is 0. |
identify.maxlag |
number of lags specified for the ACFs and PACFs, default is 36 for monthly series and 12 for quarterly series. |
arima.model |
vector of length 3, defining the arima parameters. |
arima.smodel |
vector of length 3, defining the sarima parameters. |
arima.ar |
numeric or character vector specifying the initial values for nonseasonal and seasonal autoregressive parameters in the order that they appear in the |
arima.ma |
numeric or character vector specifying the initial values for all moving average parameters in the order that they appear in the |
automdl |
|
automdl.acceptdefault |
logical for |
automdl.balanced |
logical for |
automdl.maxorder |
vector of length 2, maximum order for |
automdl.maxdiff |
vector of length 2, maximum diff. order for |
forecast_years |
number of years to forecast, default is 1 year. |
backcast_years |
number of years to backcast, default is no backcasts. |
forecast_conf |
probability for the confidence interval of forecasts |
forecast_save |
character either "ftr"(in transformed scaling) or "fct"(in original scaling) |
estimate |
if |
estimate.outofsample |
logical defining whether "out of sample" or "within sample" forecast errors should be used in calculating the average magnitude of forecast errors over the last three years. |
check |
|
check.maxlag |
the number of lags requested for the residual sample ACF and PACF, default is 24 for monthly series and 8 for quarterly series. |
slidingspans |
if |
slidingspans.fixmdl |
( |
slidingspans.fixreg |
character or character vector specifying the trading day, holiday, outlier or other user-defined regression effects to be fixed ( |
slidingspans.length |
numeric value specifying the length of each span in months or quarters (>3 years, <17 years). |
slidingspans.numspans |
numeric value specifying the number of sliding spans used to generate output for comparisons (must be between 2 and 4, inclusive). |
slidingspans.outlier |
( |
slidingspans.additivesa |
( |
slidingspans.start |
specified as a vector of two integers in the format |
history |
if |
history.estimates |
character or character vector determining which estimates from the regARIMA modeling and/or the x11 seasonal adjustment will be analyzed in the history analysis ( |
history.fixmdl |
logical determining whether the regARIMA model will be re-estimated during the history analysis. |
history.fixreg |
character or character vector specifying the trading day, holiday, outlier or other user-defined regression effects to be fixed ( |
history.outlier |
( |
history.sadjlags |
integer or vector specifying up to 5 revision lags (each >0) that will be analyzed in the revisions analysis of lagged seasonal adjustments. |
history.trendlags |
integer or vector specifying up to 5 revision lags (each >0) that will be used in the revision history of the lagged trend components. |
history.start |
specified as a vector of two integers in the format |
history.target |
character determining whether the revisions of the seasonal adjustments and trends calculated at the lags specified in |
x11.sigmalim |
vector of length 2, defining the limits for sigma in the x11 methodology, used to downweight extreme irregular values in the internal seasonal adjustment iterations. |
x11.type |
character, i.e. |
x11.sfshort |
logical controlling the seasonal filter to be used if the series is at most 5 years long.
If |
x11.samode |
character defining the type of seasonal adjustment decomposition calculated
( |
x11.seasonalma |
character or character vector of the format |
x11.trendma |
integer defining the type of Henderson moving average used for estimating the final trend cycle. If not specified, the program will invoke an automatic choice. |
x11.appendfcst |
logical defining whether forecasts should be included in certain x11 tables. |
x11.appendbcst |
logical defining whether forecasts should be included in certain x11 tables. |
x11.calendarsigma |
regulates the way the standard errors used for the detection and adjustment of
extreme values should be computed ( |
x11.excludefcst |
logical defining if forecasts and backcasts from the regARIMA model should not be used in the generation of extreme values in the seasonal adjustment routines. |
x11.final |
character or character vector specifying which type(s) of prior adjustment factors should be
removed from the final seasonally adjusted series ( |
x11regression |
if |
tblnames |
character vector of additional tables to be read into R. |
Rtblnames |
character vector naming the additional tables. |
x12path |
path to the x12 binaries, for example |
use |
|
keep_x12out |
if |
showWarnings |
logical defining whether warnings and notes generated by x12 should be returned. Errors will be displayed in any case. |
Generates an x12 specification file, runs x12 and reads the output files.
x12work
returns an object of class "x12"
.
The function summary
is used to print a summary of the diagnostics results.
An object of class "x12"
is a list containing at least the following components:
a1 |
original time series |
d10 |
final seasonal factors |
d11 |
final seasonally adjusted data |
d12 |
final trend cycle |
d13 |
final irregular components |
d16 |
combined adjustment factors |
c17 |
final weights for irregular component |
d9 |
final replacements for SI ratios |
e2 |
differenced, transformed, seasonally adjusted data |
d8 |
final unmodified SI ratios |
b1 |
prior adjusted original series |
forecast |
point forecasts with prediction intervals |
backcast |
point backcasts with prediction intervals |
dg |
a list containing several seasonal adjustment and regARIMA modeling diagnostics, i.e.: |
file |
path to the output directory and filename |
tblnames |
tables read into R |
Rtblnames |
names of tables read into R |
Only working with available x12 binaries.
Alexander Kowarik, Angelika Meraner
https://www.census.gov/data/software/x13as.html
Alexander Kowarik, Angelika Meraner, Matthias Templ, Daniel Schopfhauser (2014). Seasonal Adjustment with the R Packages x12 and x12GUI. Journal of Statistical Software, 62(2), 1-21. URL http://www.jstatsoft.org/v62/i02/.
x12
,
ts
,
summary.x12work
,
plot.x12work
,
x12-methods
### Examples data(AirPassengers) ## Not run: x12out <- x12work(AirPassengers,x12path=".../x12a.exe",transform.function="auto", arima.model=c(0,1,1),arima.smodel=c(0,1,1),regression.variables="lpyear", x11.sigmalim=c(2.0,3.0),outlier.types="all",outlier.critical=list(LS=3.5,TC=3), x11.seasonalma="s3x3") summary(x12out) ## End(Not run)
### Examples data(AirPassengers) ## Not run: x12out <- x12work(AirPassengers,x12path=".../x12a.exe",transform.function="auto", arima.model=c(0,1,1),arima.smodel=c(0,1,1),regression.variables="lpyear", x11.sigmalim=c(2.0,3.0),outlier.types="all",outlier.critical=list(LS=3.5,TC=3), x11.seasonalma="s3x3") summary(x12out) ## End(Not run)