Package: simPop 2.1.3

Matthias Templ

simPop: Simulation of Complex Synthetic Data Information

Tools and methods to simulate populations for surveys based on auxiliary data. The tools include model-based methods, calibration and combinatorial optimization algorithms, see Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v079.i10>) and Templ (2017) <doi:10.1007/978-3-319-50272-4>. The package was developed with support of the International Household Survey Network, DFID Trust Fund TF011722 and funds from the World bank.

Authors:Matthias Templ [aut, cre], Alexander Kowarik [aut], Bernhard Meindl [aut], Andreas Alfons [aut], Mathieu Ribatet [ctb], Johannes Gussenbauer [ctb], Siro Fritzmann [ctb]

simPop_2.1.3.tar.gz
simPop_2.1.3.zip(r-4.5)simPop_2.1.3.zip(r-4.4)simPop_2.1.3.zip(r-4.3)
simPop_2.1.3.tgz(r-4.4-x86_64)simPop_2.1.3.tgz(r-4.4-arm64)simPop_2.1.3.tgz(r-4.3-x86_64)simPop_2.1.3.tgz(r-4.3-arm64)
simPop_2.1.3.tar.gz(r-4.5-noble)simPop_2.1.3.tar.gz(r-4.4-noble)
simPop_2.1.3.tgz(r-4.4-emscripten)simPop_2.1.3.tgz(r-4.3-emscripten)
simPop.pdf |simPop.html
simPop/json (API)
NEWS

# Install 'simPop' in R:
install.packages('simPop', repos = c('https://statistikat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/statistikat/simpop/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • eusilc13puf - Synthetic EU-SILC 2013 survey data
  • eusilcP - Synthetic EU-SILC data
  • eusilcS - Synthetic EU-SILC survey data
  • ghanaS - Synthetic GLSS survey data
  • totalsRG - Population totals Region times Gender for Austria 2006
  • totalsRGtab - Population totals Region times Gender for Austria 2006

On CRAN:

7.04 score 30 stars 104 scripts 454 downloads 72 exports 91 dependencies

Last updated 13 days agofrom:f76e4c1783. Checks:OK: 1 ERROR: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-win-x86_64ERRORNov 08 2024
R-4.5-linux-x86_64ERRORNov 08 2024
R-4.4-win-x86_64ERRORNov 08 2024
R-4.4-mac-x86_64ERRORNov 08 2024
R-4.4-mac-aarch64ERRORNov 08 2024
R-4.3-win-x86_64ERRORNov 08 2024
R-4.3-mac-x86_64ERRORNov 08 2024
R-4.3-mac-aarch64ERRORNov 08 2024

Exports:addKnownMarginsaddWeights<-calibPopcalibSamplecalibVarscheckColchooseSILCvarsconditional.discontingencyWtcorrectHeapscorrectSingleHeapcorWtcovWtcrossValidationfactorNAgetAgegetBreaksgetBwplotStatsgetCatgetCdfgetCitizenshipgetEcoStatgetExcludegetGendergetHsizeipuloadSILCmanageSimPopObjmeanWtmergeSILCmodifySILCpanelSpBwplotpanelSpCdfplotpoppop<-popDatapopObjpopObj<-prepanelSpCdfplotprepBwplotStatsprepCdfquantileWtrestructureHHidsampsamp<-sampHHsampleDatasampleObjsampleObj<-simCategoricalsimComponentssimContinuoussimEUSILCsimInitSpatialsimRelationsimStructurespBwplotspBwplotStatsspCdfspCdfplotspecifyInputspMosaicspraguespTabletableObjtableWtunivariate.disutilityutilityIndicatorutilityModalvarWtwhipple

Dependencies:abindbackportsbootbroomcarcarDataclassclicodetoolscolorspacecowplotcpp11data.tableDEoptimRDerivdoBydoParalleldplyre1071EnvStatsfansifarverfitdistrplusforeachFormulagenericsggplot2gluegtableinumisobanditeratorsjsonlitelabelinglaekenlatticelibcoinlifecyclelme4lmtestloggingmagrittrMASSMatrixMatrixModelsmatrixStatsmgcvmicrobenchmarkminqamodelrmunsellmvtnormnlmenloptrnnetnortestnumDerivpartykitpbkrtestpillarpkgconfigproxypurrrquantregR6rangerRColorBrewerRcppRcppArmadilloRcppEigenrlangrobustbaserpartscalesspSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vcdvctrsVIMviridisLitewithrwrswoRxgboostzoo

Readme and manuals

Help Manual

Help pageTopics
Simulation of Synthetic Populations for Survey Data Considering Auxiliary InformationsimPop-package simPop
add known margins/totalsaddKnownMargins
Methods for function 'addWeights'addWeights addWeights<- addWeights<-,dataObj-method addWeights<-,simPopObj-method
Calibration of 0/1 weights by Simulated AnnealingcalibPop
Calibrate sample weightscalibSample calibSample,df_or_dataObj_or_simPopObj,dataFrame_or_Table-method
Construct a matrix of binary variables for calibrationcalibVars
Weighted contingency coefficientscontingencyWt
Correct age heapingcorrectHeaps
correctSingleHeapcorrectSingleHeap
Simulate variables of population data by cross validationcrossValidation
Class '"dataObj"'dataObj-class show,dataObj-method
Synthetic EU-SILC 2013 survey dataeusilc13puf
Synthetic EU-SILC dataeusilcP
Synthetic EU-SILC survey dataeusilcS
Extract and modify variables from population or sample data stored in an object of class 'simPopObj-class'.get_set-methods pop pop,simPopObj-method pop<- pop<-,simPopObj-method popData popData,simPopObj-method popObj popObj,simPopObj-method popObj<- popObj<-,simPopObj,dataObj-method samp samp,simPopObj-method samp<- samp<-,simPopObj-method sampleData sampleData,simPopObj-method sampleObj sampleObj,simPopObj-method sampleObj<- sampleObj<-,simPopObj,dataObj-method tableObj tableObj,simPopObj-method
Compute break points for categorizing (semi-)continuous variablesgetBreaks
Categorize (semi-)continuous variablesgetCat
Position of missing values in datagetExclude
Synthetic GLSS survey dataghanaS
iterative proportional updatingipu
get and set variables from population or sample data stored in an object of class 'simPopObj'.manageSimPopObj
Weighted sample quantilesquantileWt
Sample households from given microdata.sampHH
Utility functions for EU-SILC datacheckCol chooseSILCvars loadSILC mergeSILC modifySILC silcTools2
Simulate categorical variables of population datasimCategorical
Simulate components of continuous variables of population datasimComponents
Simulate continuous variables of population datasimContinuous
Simulate EU-SILC population datasimEUSILC
Generation of smaller regions given an existing spatial variable and a table.simInitSpatial
Simple generation of new variablesconditional.dis simple_dis univariate.dis
Class '"simPopObj"'show,simPopObj-method simPopObj-class
Simulate categorical variables of population datasimRelation
Simulate the household structure of population datasimStructure
Weighted box plot statisticsspBwplotStats
(Weighted empirical) cumulative distribution functionspCdf
create an object of class 'dataObj' required for further processingspecifyInput
Mosaic plots of expected and realized population sizesspMosaic
Sprague index (multipliers)sprague
Cross tabulations of expected and realized population sizes.spTable
Weighted cross tabulationtableWt
Population totals Region times Gender for Austria 2006totalsRG totalsRGtab
Utility measuresutility utilityIndicator utilityModal
Weighted mean, variance, covariance matrix and correlation matrixcorWt covWt meanWt varWt weighted_estimators
Whipple index (original and modified)whipple